首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrochemical corrosion improvement of a powder metallurgical (PM) stainless steel is studied in this work. Water atomized (WA) ferritic AISI 434L powders have been mixed with gas atomized (GA) austenitic (AISI 316L type) and ferritic (AISI 430L type) powders and processed through the traditional PM route. The addition of GA powder to the usual WA powder decreases the mean size of the pores of the sintered stainless steels. As the bigger pores are the ones that are able to act as crevices, unlike the smaller ones - that act as closed porosity, reduction in the number of big pores tends to improve the corrosion behaviour of PM stainless steels. Reductions of the corrosion rate (icorr) and increases of the corrosion potential (Ecorr) have been measured in neutral media, with and without chlorides. Moreover, the additional beneficial effect of achieving a duplex microstructure through the addition of GA austenitic powders to the WA ferritic powders has also been verified.  相似文献   

2.
The electrochemical behaviour of Ni-base alloys (Inconel 625, Inconel 718, G3 and Incoloy 825) is carried out at 80 °C in CO2/H2S corrosion environments using cyclic potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS) techniques. The passivity mechanisms are analysed and discussed. In addition, some significant characterisation parameters such as Ecorr, Ipass, Epit, Epp, ΔE and Ipass in cyclic polarisation curves are analysed and compared to reveal the corrosion resistance of various Ni-base alloys. The equivalent circuit model and ZsimpWin software are utilised to discuss the Nyquist plots of various Ni-base alloys. The diffusion mechanism in EIS measurement is discussed. The result shows that the corrosion resistance of the Ni-base alloys to CO2 corrosion or CO2/H2S corrosion follows the sequence: Inconel 625 > G3 > Inconel 718 > Incoloy 825. H2S works as a cathodic depolariser with accelerating initiation of the corrosion process.  相似文献   

3.
The electrochemical behavior of powder metallurgy (P/M) oxide dispersion strengthened stainless steels (SS) (316L and 434L) have been compared with standard 430 and 316 wrought samples in 0.05 mol/l sulfuric acid. The effects of sintering temperature and yttria addition on the electrochemical behavior have been studied. The behaviour of the dispersion strengthened SS was comparable to that of the straight P/M samples. The straight P/M samples sintered at 1400 °C exhibited better corrosion resistance compared to the samples sintered at 1250 °C and this has been correlated to sintered densities. The P/M austenitic SS were superior to the P/M ferritic SS. Pitting resistance, studied by cyclic polarization experiments in 3.56 wt.% NaCl, of the P/M samples were comparable to the wrought samples. The addition of Y2O3 did not affect the pitting resistance.  相似文献   

4.
The corrosion behavior and passive film characteristics of various dental alloys such as Co-Cr, Ni-Cr, Cu-Ni-Al, and commercially pure Ti (c.p. Ti) were evaluated in artificial saliva medium by utilizing electrochemical impedance spectroscopy (EIS), Tafel polarization, and cyclic polarization studies. EIS studies were carried out for various durations viz. 1 h, 1 day, and 7 days to evaluate the stability of passive film and change in corrosion characteristics with respect to time. Electrochemical parameters such as Ecorr, icorr, corrosion rate, passive film characteristics with respect to time were obtained from various studies mentioned above. The corrosion resistance decreased in the order Cu-Ni-Al > cp Ti > Co-Cr (Commercial) > Ni-Cr > Co-Cr (DRDO developed) in artificial saliva solution.  相似文献   

5.
Localized corrosion mechanism of stainless steel (SS) types UNS S30403 and UNS 31603 in the presence of iron-oxidizing bacteria Sphaerotilus spp. isolated from rust deposits was studied electrochemically. OCP transient, cyclic anodic and cathodic potentiodynamic polarization curves were measured on steel electrodes through their exposure to 3% NaCl solution supplemented with Sphaerotilus culture. The exposure period was composed of three parts: (a) 5 days incubation of steel electrodes in sterile 3% NaCl solution; (b) addition of 3 days-old Sphaerotilus culture to 3% NaCl at 3:2 v/v ratio with subsequent electrodes exposure for 11 days up to complete sedimentation of ferric oxides and (c) subsequent exposure of electrodes for 14 days in upper and bottom (sediments layer) fractions of the experimental medium. The results revealed an instantaneous gradual shift of the transient potential of both steels towards negative potentials from steady-state value of −0.15 V to −0.35 to −0.42 V (SCE) during the whole exposure interval since IOB culture addition into sterile 3% NaCl solution.No evidence of pitting corrosion was found on SS samples subsequent to their exposure to sterile 3% NaCl solution, though in the presence of IOB culture, numerous pits were revealed on 304 L steels specimens exposed to iron hydroxides sediments layer. Electrochemical characteristics (OCP or corrosion potential - ECORR, breakdown potential - EBD, repassivation potential - ERP, passivation current - iPASS) periodically measured by cyclic polarization method, allowed monitoring the electrochemical behavior changes of experimental SS and to establish the initiation of pitting corrosion in the presence of IOB, resulting in crevice effect caused by biogenic ferric oxides deposits precipitated on steel surface. Overall, steel 316L demonstrated higher resistance to pitting corrosion compared to 304L.  相似文献   

6.
The electrochemical improvement of PM 316L stainless steels by pre-alloyed powder prepassivation in 20% nitric acid in comparison with as-received specimens has been studied in this work. For comparison purposes a simultaneous study was carried out on similar composition wrought AISI 316L steels. Corrosion resistance was studied using evolution of the corrosion potential vs. time, anodic polarisations curves and Zero Resistance Ammeter technique. Reductions of the corrosion rate (icorr) were observed in prepassivated specimens in neutral chloride media. Crevice resistance was higher for prepassivated specimens and for higher densities and annealing as post-heat treatments.  相似文献   

7.
Abstract

The corrosion of austenitic stainless steels types AISI 304, 310 and 316, and of Inconel alloy, was studied at 25°c, in 5% NaCl solution at an initial pH value of 2·5, and in 5% FeCl3 at pH 1·2. The resistance of the alloys in both corrosive environments was in the order: 310 > 316 > 304 > Inconel. Pre-treatment of the specimens with bubbling chlorine gas increased the subsequent corrosion rates of the alloys. Intermittent bubbling of gas mixtures such as Cl2, N2, and/or H2S, increased the corrosion rate of Inconel alloy when Cl2 was present, but decreased the corrosion rate when H2 was present. Heat treatment of austenitic stainless steels increased the subsequent corrosion rates, whereas 16% pre-straining of annealed specimens slightly reduced the rates. Addition of trisodium phosphate to the corrosive solution reduced the corrosion rates and pitting tendency for all three types of austenitic stainless steel.  相似文献   

8.
Duplex stainless steels obtained through powder metallurgy (PM) technology from austenitic AISI 316L and ferritic AISI 430L powders were mixed on different amounts to obtain biphasic structures with austenite/ferrite ratio of 50/50, 65/35 and 85/15. Prepared mixes of powders have been compacted at 750 MPa and sintered in N2-H2 (95% and 5%) at 1250 °C for 1 h. Corrosion behaviour, using electrochemical techniques such as anodic polarization measurement, cyclic anodic polarization scan and electrochemical potentio-kinetic reactivation test and double loop electrochemical potentio-kinetic reactivation double loop test were evaluated. For duplex stainless steels, when austenite/ferrite ratio increases the corrosion potential shifts to more noble potential and passive current density decreases. The beneficial effect of annealing solution heat treatment on corrosion behaviour was established and was compared with corrosion behaviour of vacuum sintered duplex stainless steels. The results were correlated with the microstructural features.  相似文献   

9.
Fe-based alloy coating (FAC) was prepared from Fe-based amorphous metallic powders on low-carbon steel by plasma spray. The microstructures and corrosion resistances (salt spray and electrochemical tests) of the FAC and the reference hard chromium coatings (HCC) were investigated. The results indicated that the as-sprayed FAC consisted of amorphous phase, nanocrystalline grains, and borides. Both the FAC and HCC adhered well to the low-carbon steel substrate, but there are micro-cracks and pores located in FAC, which disappeared after the sealing treatment. After 60 days (1440 h) of corrosion tests by salt spray, the weight loss of FAC was about 10% of the HCC, but that of the sealed FAC (SFAC) was only about 4% of HCC. The electrochemical tests indicated that the HCC had the lowest E corr (−629 mV) and highest I corr (63.2 mA/m2). Correspondingly, the SFAC possessed the highest E corr (−321 mV) and lowest I corr (6.97 mA/m2). These suggested that the resistance to corrosion sequence (R) among these coatings was R SFAC > R FAC > R HCC. Therefore, this Fe-based alloy coating could be applied as a good alternative material to hard chromium in corrosion environments.  相似文献   

10.
The corrosion behavior of stainless steels, titanium and copper alloys exposed to flowing Pacific Ocean water was characterized using surface analytical and electrochemical techniques. Biofilm formation on stainless steels and titanium resulted in thin films of bacteria and diatoms that did not cause significant changes of the corrosion potential (Ecorr) or surface properties. Rotating cylinder experiments indicated that both Ecorr and corrosion rates for stainless steels and titanium were independent of mass transport. Four surface layers were identified on copper-containing materials: substratum metal; an inorganic chloride corrosion layer that contained alloying elements; a biofilm; and crystalline, spherical phosphate-rich deposits. All copper surfaces were colonized by bacteria independent of alloy composition. The complexity of the impedance spectra for copper-containing materials was attributed to formation of surface layers and contributions of charge transfer and mass transport controlled reactions mediated by the layers. Both anodic and cathodic reactions for copper-based materials were affected by mass transport.  相似文献   

11.
Electrochemical behavior in aerated 3.5 wt.% NaCl solution of Mg alloy AZ91D anodized or not has been investigated by using electrochemical impedance spectroscopy, potentiodynamic polarization and Ecorr-t curve. Their microstructures before and after corrosion have been examined under scanning electron microscope. Testing results from Ecorr-t and polarization curves indicate that the corrosion behavior of Mg alloy makes significant, characteristic changes due to anodization. Impedance spectra obtained show a regular evolution with exposure time revealing the development of corrosion damage. SEM micrographs confirm that there are pores, defects and microcracks in anodic film which determine the existence of film-vulnerable regions. Electrochemical data are combined with micrographs to explain protection mechanism of anodic film and corrosion mechanism of Mg alloy.  相似文献   

12.
Within the framework of a research aimed at characterizing the behaviour of new materials to pitting and crevice corrosion, an investigation has been made, using electrochemical techniques, of the following materials: ELI ferritic stainless steels (18 Cr-2 Mo-Ti; 21 Cr-3 Mo-Ti; 26 Cr-1 Mo); high chromium duplex stainless steel (Z 5 CNDU 21-08) and high chromium-nickel austenitic stainless steel (Z 2 CNDU 25-20); commercial austenitic stainless steels (AISI 304 L and 316 L) and laboratory heats of austenitic stainless steels with low contents of interstitials (LTM/18 Cr- 12 Ni, LTM/16 Cr- 14 Ni-2 Mo). It was possible to graduate a scale of resistance to pitting and crevice corrosion in neutral chloride solutions at 40 C; in particular the two experimental austenitic stainless steels LTM/18 Cr- 12 Ni and LTM/16 Cr- 14 Ni-2 Mo are at the same level as the AISI 316 L and 18 Cr-2 Mo-Ti, respectively. An occluded cell was developed and used for determining the critical potential for crevice corrosion (Elocalized corrosion). For the steels under investigation Elocalized corrosion is less noble than Epitting especially for ELI ferritic 18 Cr-2 Mo-Ti and 21 Cr–3 Mo-Ti.  相似文献   

13.
The work addresses the influence of Mn and Mo additions on corrosion resistance of AISI 304 and 316 stainless steels in 30 wt.% H2SO4 at 25 and 50 °C. Corrosion mechanism was determined by gravimetric tests, DC polarization measurements and electrochemical impedance spectroscopy (EIS). The morphology and nature of the reaction products formed on the material surface were analysed by scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS). Reduction of temperature from 50 to 25 °C drastically decreased the corrosion rate of AISI 304 and 316 stainless steels in sulphuric acid solution. Mn additions did not affect significantly the general corrosion resistance due to its low ability to form insoluble compounds in acid medium. Meanwhile, the formation of molybdenum insoluble oxides enhanced the corrosion performance.  相似文献   

14.
Plasma nitriding is a promising posttreatment technique to create a nitride layer on electroplated chromium coatings for improving their corrosion resistance. In the present study, the effects of plasma nitriding on the corrosion properties of electroplated chromium/C45 mild steel were investigated using electrochemical characterization. The chromium plated samples were nitrided using a pulsed direct current glow discharge in an NH3 atmosphere. The polarization curve measurement results showed that the plasma nitrided samples exhibited more positive corrosion potentials (Ecorr), smaller corrosion currents (Icorr), and evident passivation when compared with unnitrided chromium plating/substrate system. The high value of Ecorr and low value of Icorr imply an improvement of the corrosion resistance of the coating/substrate system after plasma nitriding.  相似文献   

15.
TiC particle-reinforced 304 stainless steels were prepared using a new developed in situ technology and their corrosion behavior was compared with that of 304SS in 5 wt.% HCl solution. As compared to 304SS, Ecorr, Epit and Erp values had shifted to a more negative region in 304SS containing TiC, indicating faster corrosion rate by TiC addition. The addition of TiC particles to 304SS resulted in no rapid pit propagation but maintained a high corrosion rate in the whole immersion time investigated.  相似文献   

16.
Open circuit corrosion testing of austenitic stainless steels, AISI types 304, 310 and 316, and of an Inconel alloy in boiling 5% NaCl solution at pH 2.5 was carried out. The influences of aeration and the introduction of Cl2 and/or H2S were also examined. Cl2 accelerated corrosion, pitting and crack formation whereas H2S had an inhibiting effect on the corrosion rates and pitting but induced hydrogen attack, which appeared in the form of blisters on the surface specimen. H2S in the absence of oxygen resulted in the growth of corrosion product on the specimen surface, instead of dissolution, but the cracking tendency also increased due to hydrogen penetration. Addition of trisodium phosphate to the corrosive solution markedly reduced pitting and lowered the corrosion rate by approximately half. Throughout the various tests it was found that the resistance of different alloys to hot chloride corrosion was in the order 310 > 316 > 304 > Inconel.  相似文献   

17.
The corrosion resistance of 1018 carbon steel, 304 and 316 type stainless steels in the LiBr (55 wt.%) + ethylene glycol + H2O mixture at 25, 50 and 80 °C has been studied using electrochemical techniques which included potentiodynamic polarization curves, electrochemical noise and electrochemical impedance spectroscopy techniques. Results showed that, at all tested temperature, the three steels exhibited an active-passive behavior. Carbon steel showed the highest corrosion rate, since both the passive and corrosion current density values were between two and four orders of magnitude higher than those found for both stainless steels. Similarly, the most active pitting potential values was for 1018 carbon steel. For 1018 carbon steel, the corrosion process was under a mixed diffusion and charge transfer at 25 °C, whereas at 50 and 80 °C a pure diffusion controlled process could be observed. For 316 type stainless steel, at 25 and 50 °C a species adsorption controlled process was observed, whereas at 80 °C a diffusion controlled mechanism was present. Additionally, at 25 °C, the three steels were more susceptible to uniform type of corrosion, whereas at 50 and 80 °C they were very susceptible to localized type of corrosion.  相似文献   

18.
This paper addresses the influence of Cu and Sn addition on the corrosion resistance of AISI 304 and 316 stainless steels in 30 wt% H2SO4 at 25 and 50 °C. The corrosion process was evaluated by gravimetric tests, DC measurements and electrochemical impedance spectroscopy (EIS). The corrosion products were analysed by SEM, X-ray mapping and XPS before and after accelerated tests. The behaviour of both AISI 304 and 316 stainless steels in sulphuric acid solution was greatly improved by increasing Cu concentration and the synergic effect of Cu and Sn. Addition of Sn increased corrosion resistance, but less than addition of copper.  相似文献   

19.
C. Liu  Q. Bi  A. Matthews 《Corrosion Science》2003,45(6):1257-1273
In Part I, of this work the equivalent circuits for electrochemical impedance spectroscopy (EIS) modelling of PVD coated steels in 0.5 N NaCl solution were established. In this paper, Part II, the EIS spectra of such coated systems are modelled using the equivalent circuits. The circuit parameters obtained are correlated with the dielectric characteristics, and microstructure of steels and PVD hard coatings. Coating porosity and localised corrosion with exposure time have also been determined using the corrosion potential difference (ΔEcorr) between mild steel and PVD coatings and polarisation resistance Rp, which was obtained through EIS modelling using equivalent circuits. In addition, diffusion rates of the reactants (e.g. oxygen) through ‘permeable’ defects (e.g. pores) are studied by introducing the diffusion impedances W and O in EIS modelling. It has been found that the usage of impedances W and O is closely related to the crystallite features of PVD coatings. Warburg impedance (W) is most suitable for columnar crystallites, while the co-tangent-hyperbolic diffusion impedance (O) is best for the equiaxed crystallite structure. Finally, visual inspection, SEM examination, and the scanning reference electrode technique were employed to observe the corrosion progress of PVD coated steels with immersion time, in order to validate the EIS interpretation.  相似文献   

20.
With an increase in dissolved hydrogen (DH) content from 0 to 5 cm3 STP H2/kg H2O the electrochemical behaviour of Alloy 600 in deaerated PWR primary water at 290 °C was investigated, using corrosion potential (Ecorr) monitoring, potentiodynamic polarization, cyclic voltammetry and electrochemical impedance spectroscopy (EIS). DH content controls the Ecorr of Alloy 600. Raising DH content directly promotes the cathodic process and reduces the passivity of Alloy 600 significantly. EIS results show that increasing DH content results in a thinner inner-layer oxide film and ions diffusion becomes easier. The mechanism of these DH effects is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号