首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Effective formulas for computing Green's function of an exponentially graded three‐dimensional material have been derived in previous work. The expansion approach for evaluating Green's function has been extended to develop corresponding algorithms for its first‐ and second‐order derivatives. The resulting formulas are again obtained as a relatively simple analytic term plus a single double integral, the integrand involving only elementary functions. A primary benefit of the expansion procedure is the ability to compute the second‐order derivatives needed for fracture analysis. Moreover, as all singular terms in this hypersingular kernel are contained in the analytic expression, these expressions are readily implemented in a boundary integral equation calculation. The computational formulas for the first derivative are tested by comparing with results of finite difference approximations involving Green's function. In turn, the second derivatives are then validated by comparing with finite difference quotients using the first derivatives. Published in 2010 by John Wiley & Sons, Ltd.  相似文献   

2.
3.
A symmetric Galerkin formulation and implementation for heat conduction in a three‐dimensional functionally graded material is presented. The Green's function of the graded problem, in which the thermal conductivity varies exponentially in one co‐ordinate, is used to develop a boundary‐only formulation without any domain discretization. The main task is the evaluation of hypersingular and singular integrals, which is carried out using a direct ‘limit to the boundary’ approach. However, due to complexity of the Green's function for graded materials, the usual direct limit procedures have to be modified, incorporating Taylor expansions to obtain expressions that can be integrated analytically. Several test examples are provided to verify the numerical implementation. The results of test calculations are in good agreement with exact solutions and corresponding finite element method simulations. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
A simple boundary element method for solving potential problems in non‐homogeneous media is presented. A physical parameter (e.g. heat conductivity, permeability, permittivity, resistivity, magnetic permeability) has a spatial distribution that varies with one or more co‐ordinates. For certain classes of material variations the non‐homogeneous problem can be transformed to known homogeneous problems such as those governed by the Laplace, Helmholtz and modified Helmholtz equations. A three‐dimensional Galerkin boundary element method implementation is presented for these cases. However, the present development is not restricted to Galerkin schemes and can be readily extended to other boundary integral methods such as standard collocation. A few test examples are given to verify the proposed formulation. The paper is supplemented by an Appendix, which presents an ABAQUS user‐subroutine for graded finite elements. The results from the finite element simulations are used for comparison with the present boundary element solutions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
The symmetric Galerkin boundary element method is used to solve boundary value problems by keeping the symmetric nature of the matrix obtained after discretization. The matrix elements are obtained from a double integral involving the double derivative of Green's operator, which is highly singular. The paper presents a regularization of the hypersingular integrals which depend only on the properties of Green's tensor. The method is presented in the case of Laplace's operator, with an example of application. The case of elasticity is finally addressed theoretically, showing an easy extension to any case of anisotropy. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Mixed-mode crack analysis in unidirectionally and bidirectionally functionally graded materials is performed by using a boundary integral equation method. To make the analysis tractable, the Young's modulus of the functionally graded materials is assumed to be exponentially dependent on spatial variables, while the Poisson's ratio is assumed to be constant. The corresponding boundary value problem is formulated as a set of hypersingular traction boundary integral equations, which are solved numerically by using a Galerkin method. The present method is especially suited for straight cracks in infinite FGMs. Numerical results for the elastostatic stress intensity factors are presented and discussed. Special attention of the analysis is devoted to investigate the effects of the material gradients and the crack orientation on the elastostatic stress intensity factors.  相似文献   

7.
In this article a higher-order theory for functionally graded beams based on the expansion of the two-dimensional (2D) equations of elasticity for functionally graded materials into Fourier series in terms of Legendre's polynomials is presented. Starting from the 2D equations of elasticity, the stress and strain tensors, displacement, traction, and body force vectors are expanded into Fourier series in terms of Legendre's polynomials in the thickness coordinate. In the same way, the material parameters that describe the functionally graded material properties are also expanded into Fourier series. All equations of the linear elasticity including Hooke's law are transformed into the corresponding equations for the Fourier series expansion coefficients. Then a system of differential equations in terms of the displacements and the boundary conditions for the Fourier series expansion coefficients are obtained. In particular, the first- and second-order approximations of the exact infinite dimensional beam theory are considered in more detail. The obtained boundary-value problems are solved by the finite element method with MATHEMATICA, MATLAB, and COMSOL multiphysics software. Numerical results are presented and discussed.  相似文献   

8.
The transient Green's function of the 2‐D Lamb's problem for the general case where point source and receiver are situated beneath the traction‐free surface is derived. The derivations are based on Laplace‐transform methods, utilizing the Cagniard–de Hoop inversion. The Green's function is purely algebraic without any integrals and is presented in a numerically applicable form for the first time. It is used to develop a Green's function BEM in which surface discretizations on the traction‐free boundary can be saved. The time convolution is performed numerically in an abstract complex plane. Hence, the respective integrals are regularized and only a few evaluations of the Green's function are required. This fast procedure has been applied for the first time. The Green's function BEM developed proved to be very accurate and efficient in comparison with analogue BEMs that employ the fundamental solution. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

9.
研究了由金属和陶瓷组成的功能梯度材料薄球壳热屈曲问题。用张量方法推导得到轴对称球壳稳定性方程。将热本构方程应用到球壳稳定性方程中,得到以位移表示的球壳热屈曲方程组。分别考虑均布外压和温度作用,采用伽辽金法计算分析简支球壳的热屈曲问题,给出薄球壳厚度、物性参数变化、内外表面温差变化引起的临界温度变化趋势和临界压力变化趋势。  相似文献   

10.
The simple boundary element method consists of recycling existing codes for homogeneous media to solve problems in non‐homogeneous media while maintaining a purely boundary‐only formulation. Within this scope, this paper presents a ‘simple’ Galerkin boundary element method for multiple cracks in problems governed by potential theory in functionally graded media. Steady‐state heat conduction is investigated for thermal conductivity varying either parabolically, exponentially, or trigonometrically in one or more co‐ordinates. A three‐dimensional implementation which merges the dual boundary integral equation technique with the Galerkin approach is presented. Special emphasis is given to the treatment of crack surfaces and boundary conditions. The test examples simulated with the present method are verified with finite element results using graded finite elements. The numerical examples demonstrate the accuracy and efficiency of the present method especially when multiple interacting cracks are involved. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
在较窄频带条件下,传统的噪声互相关提取时域格林函数(Time Domain Green’ s Function, TDGF)方法分辨率低,影响了海洋被动声层析的应用。针对这一问题,提出了一种基于稀疏贝叶斯学习(Sparse Bayesian Learning,SBL)的噪声互相关提取 TDGF的方法。首先,构造了 TDGF的稀疏表示模型,其中字典矩阵由傅里叶变换算子构成,观测矩阵由频域噪声互相关函数组成。然后,使用预累积处理来折中 SBL估计 TDGF的分辨率与稳定性。仿真与海试实验数据表明,联合预累积处理的 SBL方法有效地从较窄频带的海洋环境噪声中提取了传统方法无法分辨的TDGF到达时间,从而为自适应选取噪声频段、实现快速海洋被动声层析提供了一种可行思路。  相似文献   

12.
A general, efficient and robust boundary element method (BEM) formulation for the numerical solution of three‐dimensional linear elastic problems in transversely isotropic solids is developed in the present work. The BEM formulation is based on the closed‐form real‐variable expressions of the fundamental solution in displacements Uik and in tractions Tik, originated by a unit point force, valid for any combination of material properties and for any orientation of the radius vector between the source and field points. A compact expression of this kind for Uik was introduced by Ting and Lee (Q. J. Mech. Appl. Math. 1997; 50 :407–426) in terms of the Stroh eigenvalues on the oblique plane normal to the radius vector. Working from this expression of Uik, and after a revision of their final formula, a new approach (based on the application of the rotational symmetry of the material) for deducing the derivative kernel Uik, j and the corresponding stress kernel Σijk and traction kernel Tik has been developed in the present work. These expressions of Uik, Uik, j, Σijk and Tik do not suffer from the difficulties of some previous expressions, obtained by other authors in different ways, with complex‐valued functions appearing for some combinations of material parameters and/or with division by zero for the radius vector at the rotational‐symmetry axis. The expressions of Uik, Uik, j, Σijk and Tik have been presented in a form suitable for an efficient computational implementation. The correctness of these expressions and of their implementation in a three‐dimensional collocational BEM code has been tested numerically by solving problems with known analytical solutions for different classes of transversely isotropic materials. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
The thermal fracture problem of an interface crack between a graded orthotropic coating and the homogeneous substrate is investigated by two different approaches. For the case that most of the material properties in the graded orthotropic coating are assumed to vary as an exponential function, the integral transform and singular integral equation technique is used to obtain some analytical results. In order to analyze the case with more complex material distribution, an interaction integral is presented to evaluate the thermal stress intensity factors of cracked functionally graded materials (FGMs), and then the element-free Galerkin method (EFGM) is developed to obtain the final numerical results. The good agreement is obtained between the numerical results and the analytical ones. In addition, the influence of material gradient parameters and material distribution on the thermal fracture behavior is also presented.  相似文献   

14.
The use of Green's functions has been considered a powerful technique in the solution of fracture mechanics problems by the boundary element method (BEM). Closed‐form expressions for Green's function components, however, have only been available for few simple 2‐D crack geometry applications and require complex variable theory. The present authors have recently introduced an alternative numerical procedure to compute the Green's function components that produced BEM results for 2‐D general geometry multiple crack problems, including static and dynamic applications. This technique is not restricted to 2‐D problems and the computational aspects of the 3‐D implementation of the numerical Green's function approach are now discussed, including examples. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

15.
This article presents a new elasticity solution for transversely isotropic, functionally graded circular plates subject to axisymmetric loads. It is assumed that the material properties vary along the thickness of a circular plate according to an exponential form. By extending the displacement function presented by Plevako to the case of transversely isotropic material, we derived the governing equation of the problem studied. The displacement function was assumed as the sum of the Bessel function and polynomial function to obtain the analytical solution of a transversely isotropic, functionally graded circular plate under different boundary conditions. As a numerical example, the influence of the graded variations of the material properties on the displacements and stresses was studied. The results demonstrate that the graded variations have a significant effect on the mechanical behavior of a circular plate.  相似文献   

16.
The solution of a Dirichlet boundary value problem of plane isotropic elasticity by the boundary integral equation (BIE) of the first kind obtained from the Somigliana identity is considered. The logarithmic function appearing in the integral kernel leads to the possibility of this operator being non-invertible, the solution of the BIE either being non-unique or not existing. Such a situation occurs if the size of the boundary coincides with the so-called critical (or degenerate) scale for a certain form of the fundamental solution used. Techniques for the evaluation of these critical scales and for the removal of the non-uniqueness appearing in the problems with critical scales solved by the BIE of the first kind are proposed and analysed, and some recommendations for BEM code programmers based on the analysis presented are given.  相似文献   

17.
A simple idea is proposed to solve boundary value problems for elastoplastic solids via boundary elements, namely, to use the Green's functions corresponding to both the loading and unloading branches of the tangent constitutive operator to solve for plastic and elastic regions, respectively. In this way, domain integrals are completely avoided in the boundary integral equations. Though a discretization of the region where plastic flow occurs still remains necessary to account for the inhomogeneity of plastic deformation, the elastoplastic analysis reduces, in essence, to a straightforward adaptation of techniques valid for anisotropic linear elastic constitutive equations (the loading branch of the elastoplastic constitutive operator may be viewed formally as a type of anisotropic elastic law). Numerical examples, using J2‐flow theory with linear hardening, demonstrate that the proposed method retains all the advantages related to boundary element formulations, is stable and performs well. The method presented is for simplicity developed for the associative flow rule; however, a full derivation of Green's function and boundary integral equations is also given for the general case of non‐associative flow rule. It is shown that in the non‐associative case, a domain integral unavoidably arises in the formulation. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
程国华  曹志远 《功能材料》2006,37(8):1348-1351
推导出适应功能梯度材料构件分析的半解析方法基本算式,并针对功能梯度构件的材料参数随空间坐标变化的特点,将材料参数纳入到力学方程中进行整体积分计算,从而编制统一程序计算不同边界条件下的板件问题.该法适应性强而又简洁高效,且不同于一般的半解析法,可采用一维离散,给出三维分析结果,是一种解决功能梯度构件力学性能分析的有效数值方法.文中用半解析法分析几种具有不同复杂边界条件的功能梯度板,给出了板件的力学量三维分布形态.  相似文献   

19.
We optimize continuous quench process parameters to produce functionally graded aluminium alloy extrudates. To perform this task, an optimization problem is defined and solved using a standard non‐linear programming algorithm. Ingredients of this algorithm include (1) the process parameters to be optimized, (2) a cost function: the weighted average of the precipitate number density distribution, (3) constraint functions to limit the temperature gradient (and hence distortion and residual stress) and exit temperature, and (4) their sensitivities with respect to the process parameters. The cost and constraint functions are dependent on the temperature and precipitate size which are obtained by balancing energy to determine the temperature distribution and by using a reaction‐rate theory to determine the precipitate particle sizes and their distributions. Both the temperature and the precipitate models are solved via the discontinuous Galerkin finite element method. The energy balance incorporates non‐linear boundary conditions and material properties. The temperature field is then used in the reaction rate model which has as many as 105 degrees‐of‐freedom per finite element node. After computing the temperature and precipitate size distributions we must compute their sensitivities. This seemingly intractable computational task is resolved thanks to the discontinuous Galerkin finite element formulation and the direct differentiation sensitivity method. A three‐dimension example is provided to demonstrate the algorithm. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
This paper presents the application of hierarchical matrices to boundary element methods for elastodynamics based on Green's functions for a horizontally layered halfspace. These Green's functions are computed by means of the direct stiffness method; their application avoids meshing of the free surface and the layer interfaces. The effectiveness of the methodology is demonstrated through numerical examples, indicating that a significant reduction of memory and CPU time can be achieved with respect to the classical boundary element method. This allows increasing the problem size by one order of magnitude. The proposed methodology therefore offers perspectives to study large scale problems involving three-dimensional elastodynamic wave propagation in a layered halfspace, with possible applications in seismology and dynamic soil–structure interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号