首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An experimental investigation has been carried out into the effects of changes in plug design on the wall thickness distribution of thermoformed products. Plugs were machined with a series of geometrical variations and their effects on the process were measured. The overall results show that the plug has a crucial role in controlling the wall thickness distribution in thermoforming. Larger plugs tend to distribute more material to the base of the product, but the introduction of a small sidewall taper, base radius, or a reduction in plug diameter tend to lead to more balanced distributions. However, larger changes in any of the variables tend to destroy these benefits. It has also been demonstrated that the frictional and thermal properties of the plug are important in determining the deformation response of the sheet material. There is a clear evidence of slip in the sheet during plug contact and, although the cooling effect of the plug appears to be minimal, cooling in the highly deformed regions away from the plug appears to be a significant factor. POLYM. ENG. SCI., 47:804–813, 2007. © 2007 Society of Plastics Engineers  相似文献   

2.
The fracture of polymeric sheets is one of the practical problems occurring during plug‐assisted vacuum thermoforming. This defect can occur during both the plug‐assist and vacuum‐forming stages. This article focuses on two issues: (1) the origins of fracture creation and (2) the determination of the process parameters needed for removal of the defect. The results of our work not only lead to an understanding of the cause of this problem but also enable us to calculate the parameters that affect the fracture of polymeric sheets during plug‐assisted vacuum thermoforming. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

3.
Plug‐assist thermoforming is a well‐known technique in polymer processing because of its interesting features. The dynamic value of driving‐force for the stretching process is determined based on equilibrium equation. This amount of force is required for applying to a plug to stretch a sheet. It is used for calculation of the required theoretical work and power of a plug‐assist thermoforming process. By using a nonlinear viscoelastic rheological model in the proposed mathematical model, its validity was examined by performing experimental tests on ABS sheets. POLYM. ENG. SCI., 2009. © 2008 Society of Plastics Engineers  相似文献   

4.
Solving problems for thermoforming processes in the production of axisymmetric thin walled plastics is investigated in this research work. A nonlinear viscoelastic rheological model with a new strain energy function is suggested for improvement of physical properties of final product. For model validation, a quantitative relation between stress and technical parameters of plug‐assist thermoforming is determined by comparison of theoretical and experimental results. This process with the proposed rheological model could be suggested for prevention from some technical defects such as wall thickness variations, physical instability during inflation‐shrinkage, and warpage exhibited in the final part of a polymeric sheet thermoforming. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 4148–4152, 2006  相似文献   

5.
This paper presents an isothermal, one-dimensional model predicting wall-thickness profiles of vacuum- or pressure-formed products. After formulating a set of simplifying assumptions theoretical analyses of forming into conical and truncated (deep and shallow) molds are presented and discussed. Fair agreement is found between previously reported experimental results and the proposed theoretical models.  相似文献   

6.
Water‐powered projectile‐assisted injection molding (W‐PAIM) is an innovative molding process for the production of hollow shaped polymer parts. The W‐PAIM utilizes high pressure water as a power to drive a solid projectile to displace the molten polymer core to form the hollow space. The residual wall thickness (RWT) and its distribution are the important quality criteria. The experimental and numerical investigations were conducted. Experimental specimens showed that the RWT of a W‐PAIM pipe was much thinner than that of a water‐assisted injection molding pipe. The cross‐section size of the projectile defined the basic penetration section size. The software FLUENT was used to obtain the instantaneous distributions of the flow field, which revealed the forming mechanism of the RWT. The experiments indicated that the processing parameters, such as melt temperature, melt injection pressure, mold temperature, and water injection delay time had obvious effects on the RWT, while the water pressure had little effect on it. The RWT of curved pipes was thin at the inner concave side while thick at the outer convex side. The RWTs at the bend portion are influenced by the deflection angle and bending radius, which is due to the pressure difference between the two sides. POLYM. ENG. SCI., 59:295–303, 2019. © 2018 Society of Plastics Engineers  相似文献   

7.
Compared to amorphous thermoplastics, semi‐crystalline thermoplastics usually have a smaller processing range for thermoforming, due to their narrow temperature window for the transition from viscoelastic to viscous material behavior. On the other hand, semi‐crystalline thermoplastics offer superior properties for applications like ductility or chemical resistance. Within this article, modification of semi‐crystalline polyamide 12 by radiation cross‐linking with respect to its suitability for vacuum thermoforming as well as the effects of processing parameters and sheet thickness on the resulting strain distributions in thermoformed parts are shown. Experimental thermoforming processing studies in combination with digital image correlation measurements, thermo‐mechanical and elongational rheometry were performed to characterize the behavior of cross‐linked semi‐crystalline thermoplastics in the vacuum thermoforming process. POLYM. ENG. SCI., 2011. ©2011 Society of Plastics Engineers  相似文献   

8.
As vacuum‐assisted resin transfer molding (VARTM) is being increasingly used in aerospace applications, the thickness gradient and variation issues are gaining more attention. Typically, thickness gradient and variations result from the infusion pressure gradient during the process and material variations. Pressure gradient is the driving force for resin flow and the main source of thickness variation. After infusion, an amount of pressure gradient is frozen into the preform, which primarily contributes to the thickness variation. This study investigates the mechanism of the thickness variation dynamic change during the infusion and relaxing/curing processes. A numerical model was developed to track the thickness change of the bagging film free surface. A time‐dependent permeability model as a function of compaction pressure was incorporated into an existing resin transfer molding (RTM) code for obtaining the initial conditions for relaxing/curing process. Control volume (CV) and volume of fluid (VOF) methods were combined to solve the free surface problem. Experiments were conducted to verify the simulation results. The proposed model was illustrated with a relatively complex part. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   

9.
Various surface process methods have been developed to decorate plastic or metallic products. Film insert molding (FIM) is one of the methods that enhance the functional and/or aesthetic qualities of a product's surface. However, the drawbacks of FIM are that the thickness of the film can change, depending on the product configuration, and further, the pattern of the decorated film may change. Therefore, this article attempts to quantify the changes in the thickness and in the pattern of the decorated film during the FIM process. G'Sell's viscoelastic constitutive law was adopted to describe the rheological behavior of polymer film. A constant‐velocity uniaxial tensile test at high temperature, which is a new method proposed in this research, was used to obtain the rheological parameters. We also suggested a visual method for predicting pattern change, which was validated by comparing analytical results with those of real products. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

10.
Three‐dimensional solid element analysis and the membrane approximated analysis employing the hyperelastic material model have been developed for the simulation of the thermoforming process. For the free inflation test of a rectangular sheet, these two analyses showed the same behavior when the sheet thickness was thin, and they deviated more and more as the sheet thickness increased. In this research, we made a guideline for the accuracy range of sheet thickness for the membrane analysis to be applied. The simulations were performed for both vacuum forming and the plug‐assisted forming process. To compare the simulation results with experiments, laboratory scale thermoforming experiments were performed with acrylonitrile‐butadiene‐styrene (ABS). The material parameters of the hyperelastic model were obtained by uni‐directional hot tensile tests, and the thickness distributions obtained from experiments corresponded well with the numerical results. Non‐isothermal analysis that took into account the sheet, temperature distribution measured directly from the experiments was also performed. It was found that the non‐isothermal analysis greatly improved the predictability of the numerical simulation, and it is important to take into account the sheet temperature distribution for a more reliable simulation of the thermoforming process.  相似文献   

11.
气辅注射成型的影响因素有很多,选取四因素三水平正交表,通过正交试验法,利用CAE软件Moldflow分析了不同工艺参数对气体穿透的影响,用极差法分析了各因素对气体穿透的影响程度,最后对工艺参数进行了优化组合.  相似文献   

12.
Plastic tubes and hollow rods can be fabricated using gas‐assisted injection molding technology with reduced cost. The residual wall thickness around dimensional transitions and curved sections is of great concern. This research investigated the uniformity of the residual wall thickness distribution in circular tubes with dimensional variations and curved sections. It was found that the wall thickness was not uniform near transitions. With the addition of fillets with proper angles around transitions, the uniformity of residual wall could be greatly improved. The residual wall thickness in curved sections was thick around the outer wall and thin around the inner wall. Low melt temperature and high gas pressure were found to reduce the deviation in the wall thickness around curved sections.  相似文献   

13.
Contact friction plays a critical role in all the major thermoforming processes for polymers. However, these effects are very difficult to measure in practice and, as a result, have received little scientific investigation. In this work, two independently developed test methods for the measurement of elevated temperature polymer‐to‐polymer contact friction are presented, and their results are compared in detail for the first time. One is based on a modified moving sled friction test, whereas the other uses a rotational rheometer. In each case, friction tests were conducted between two plug and two sheet materials. The results show that broadly similar coefficients of friction were obtained from the two test methods. The measured values were quite low (<0.3) at lower temperatures and typically were higher for polypropylene (PP) sheet than for polystyrene (PS). On approaching the glass transition temperature for PS (95°C) and the crystalline melting point for PP (165°C), the friction coefficients rose very sharply, and both test techniques became increasingly unreliable. It was concluded that despite their physical differences, both test techniques were able to capture the highly temperature sensitive nature of friction between polymer materials used in thermoforming. POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers  相似文献   

14.
One of the problems encountered in fluid‐assisted injection‐molded parts is the gas or water “fingering” phenomenon, in which gas (water) bubbles penetrate nonuniformly into the core of the parts and form finger‐shape branches. Severe fingerings can lead to significant reductions in part stiffness. This study investigated the fingering phenomenon in fluid‐assisted injection‐molded disk parts. Experiments were carried out on a reciprocating injection‐molding machine equipped with gas‐ and water‐injection units. The material used was virgin polypropylene. A disk cavity with two different thicknesses was used for all experiments. The effects of various processing parameters on the fingering were examined. It was found that the melt short shot size and mold temperature were the principal parameters affecting the formation of part fingerings. In addition, the formation mechanism of part fingerings has also been proposed to better understand the formation of part fingerings. It has been shown that the fluid‐assisted filling process is an unstable system by nature. Any small perturbation by material viscosity or by temperature gradient can trigger the unbalance of gas (water) penetrations in the parts and result in fingerings. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

15.
Residual wall thickness is an important indicator which aims at measuring the quality of water‐assisted injection molding (WAIM) parts. The changes of residual wall thickness around dimensional transitions and curved sections are particularly significant. Free interface of the water/melt two‐phase was tracked by volume of fluid (VOF) method. Computational fluid dynamics (CFD) method was used to simulate the residual wall thickness, and the results corresponded with that of experiments. The results showed that the penetration of water at the long straight sections was steady, and the distribution of the residual wall thickness was uniform. However, there was melt accumulation phenomenon at the dimensional transitions, and the distribution of the residual wall thickness wasn't uniform. Adding fillet at the dimensional transitions could improve the uniformity of the residual wall thickness distribution, and effectively reduce water fingering. Additionally, at the curved sections, the residual wall thickness of the outer wall was always greater than that of the inner wall, and the fluctuations of the residual wall thickness difference were small. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

16.
The problem of modeling and the dynamic finite element simulation of thermoforming process for viscoelastic sheet are considered. The pressure load used in modeling is thus deduced from the thermodynamic law of ideal gases. The viscoelastic behavior of the K‐BKZ model is considered. The Lagrangian formulation together with the assumption of the membrane theory is used in the finite element implementation. The numerical validation is performed by comparing the theoretical solution for the uniaxial and equibiaxial hencky deformation with numerical results. Moreover, the influence of the K‐BKZ constitutive model, for three linear time distribution of airflow rate loading, on the thickness and on the stress distribution in thermoforming of containers made of HDPE are analyzed. POLYM. ENG. SCI., 45:1319–1335, 2005. © 2005 Society of Plastics Engineers  相似文献   

17.
Ultrasonic technology provides a powerful and noninvasive method of in‐process measurement during injection molding and extrusion. Changes in the velocity, attenuation and reflection coefficients of high frequency sound waves can be related to the state and conditions of the materials through which they propagate. The velocity of an ultrasonic wave changes with density and elastic moduli; this allows information on solidification and material properties to be collected during the molding cycle. The time of flight of the wave is a function of velocity and path length. This paper shows that it can be correlated with the residual wall thickness of polymer in the mold during gas assisted injection molding. POLYM. ENG. SCI., 47:1730–1739, 2007. © 2007 Society of Plastics Engineers  相似文献   

18.
Layer thickness is an important factor in judging the quality of a water‐assisted coinjection molding (WACIM) part. Here, a novel nondestructive method for measuring layer thickness via ultrasonic technology is proposed. The reflected signals from the interface of a WACIM part were measured by an immersed pulse‐echo method and calculated using a transfer function of the medium. Two objective functions were employed to describe the nonsimilarity between the measured signals and the calculated signals. By solving a multiobjective optimization problem, the optimum parameter was obtained and used to calculate the thickness of each layer in a WACIM part. The proposed method was employed to measure the layer thickness of WACIM specimens with different cross sections along the flow direction. Experimental results showed that the proposed method can correctly measure the variation in layer thickness of each layer of a WACIM part. The proposed method has broad application prospects in nondestructively measuring the layer thickness of polymeric parts. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46540.  相似文献   

19.
The effects of processing parameters on the strength of the fusion bonding interface have been investigated. The interface was generated when an isotactic polypropylene homopolymer was injection molded on a solid self‐reinforced polypropylene substrate. The interface strength was measured in shear configuration, and the melting behavior of substrate was studied using differential scanning calorimetry. The results show that strong bonding interface can be achieved when the correct processing parameters are chosen. The interfacial strength is largely improved if the interface temperature is higher than the melting temperature of the substrate layer, and in these specimens failure does not take place at the interface. Furthermore, for a fixed interface temperature, interface strength increases with thermal gradient. Finally, in the analyzed holding pressure range, pressure apparently has no effect on strength. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 261–265, 2006  相似文献   

20.
The effect of newly developed axial feed thermoforming process (AFTF) on mechanical properties and morphology were investigated to gain a better understanding of structure–properties–process relationship. The starting material for AFTF is an oriented polypropylene tube (OPP) produced in uniaxial direction by using solid state extrusion process. Morphological changes from solid‐state extrusion are briefly reported. A die‐less bulge testing system was designed to bulge OPP tube at a high temperature in biaxial direction. Wide‐angle X‐ray diffraction, field emission scanning electron microscope, and optical microscopy were used to characterize the microstructure of the extruded and bulged samples of OPP. In addition, tensile tests were carried out at room temperature of samples machined from the extruded and bulged tubes along the axial and hoop directions. The results show that tensile strength increases with draw ratio in extruded samples as well as improvements in ductility were obtained in die‐less bulge tests with an increase in axial feed. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号