首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A supported iron‐based diimine catalyst (SC) was prepared by immobilization of 2,6‐bis[1‐(2,6‐diisopropylphenylimino)ethyl]pyridine iron chloride (I) on silica and employed in ethylene polymerization. The kinetic behavior of ethylene polymerization with SC was studied. The effects of the Al/Fe molar ratio, reaction temperature, and cocatalyst on the catalytic activity as well as the melting temperature, molecular weight, and morphology of the polymers obtained were also investigated. The results showed that good catalytic activities can be obtained even with a small amount of the cocatalyst methylaluminoxane (MAO) or triethylaluminum (AlEt3). The polyethylenes obtained with a supported catalyst had higher molecular weight, higher melting temperature, and better morphology than those obtained with a homogeneous catalyst. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 466–469, 2003  相似文献   

2.
Bis(4‐(4‐amine‐3,5‐diisopropylbenzyl)‐2,6‐diisopropylphenylimino) acenaphthene NiBr2 (Catalyst I) was synthesized. The complex covalently supported on Et3Al‐treated silica (SC) and used for ethylene polymerization was produced with cocatalyst of common inexpensive alkylaluminum compounds. Polyethylenes (PEs) with branching numbers of 12.94 (1000C) to 116.02 (1000C) were prepared in heptane. The polymerization conditions, such as the cocatalyst, Al/Ni ratio, and temperature, had significant effects on catalytic activity and properties of polyethylenes. Confirmed by high‐temperature 13C NMR, the polyethylenes synthesized contain significant amounts of not only methyl but also ethyl, propyl, butyl, pentyl, and other long branches (longer than six carbons). The branching degree of polyethylenes increased with temperature, while their molecular weight and melting point decreased correspondingly, resulting in linear semicrystalline to totally amorphous polymers. The formation of the branches could be illustrated by the chain walking mechanism, which controlled their specific spacing and conformational arrangements with one another. © 2006 Wiley Periodicals, Inc. J Appl PolymSci 103: 1483–1489, 2007  相似文献   

3.
以一种亚乙基苊(α-二亚胺)镍配合物为主催化剂,研究了温度、压力、助催化剂及其用量等对乙烯溶液聚合制备超支化聚乙烯(HBPE)的影响,并对HBPE的结构与性能进行分析.结果表明:随着温度或压力的升高,催化剂活性均呈现先升高后下降的趋势;HBPE的相对分子质量随温度的升高而下降,而支化度与温度呈正比,与压力呈反比;二氯乙...  相似文献   

4.
Soluble complexes of titanium(IV) bearing sterically hindered biphenols, such as biphenol, 1,1′‐methylene di‐2‐naphthol, 2,2′‐methylene bis(4‐chlorophenol), 2,2′‐methylene bis(6‐tert‐butyl‐4‐ethyl phenol), and 2,2′ ethylidene bis(4,6‐di‐tert‐butyl phenol), were prepared and characterized. These catalyst precursors, formulated as [Ti(O∧O)X2], were active in the polymerization of ethylene at high temperatures in combination with ethylaluminum sesquichloride as a cocatalyst. The ultra‐low‐molecular‐weight polyethylenes (PEs) were linear and crystalline and displayed narrow polydispersities. The catalytic polymerization leading to PE waxes in this reaction exhibited unique properties that have potential applications in surface coatings and adhesive formulations. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1531–1539, 2007  相似文献   

5.
The combination of 1,4–bis(2,6-diisopropylphenyl)-acenaphthenediimine-dichloronickel (II) (1) and methylaluminoxane (MAO) has been shown as being highly active in ethylene polymerization under high pressure and temperature. Herein we describe the effects of ethylene pressure and reaction temperature on polymer properties and reaction performance. The polyethylenes synthesized with the system 1/MAO are highly branched, with 105 to 277 branches per 1000 backbone carbon atoms, depending on the reaction conditions. The branching index increases with the rise of temperature or with the decrease of ethylene pressure. These branches go from methyl to hexyl, or even farther, and present a pattern in which 1,4; 1,5 and 1,6 methyl groups appear mainly and isolated methyl groups are not present. These branches are generated by a chain-walking system. The polyethylenes produced with these systems have a molecular weight (Mw) between 44,000 and 105,000 Daltons and polydispersions from 2,0 to 4,0, depending on reaction conditions. The polymer molecular weight tends to decrease with the increasing temperature of polymerization.  相似文献   

6.
Polymerization methods of ethylene include the slurry, solution, and gas-phase processes. This study investigates polymerization conditions and kinetics under slurry process. Typical metallocene catalyst/cocatalyst Cp2ZrCl2/MAO system was used for ethylene polymerization. Two kinds of polymerization kinetics were compared in this study, multiple active-site model and transfer-effect model. The kinetic studies used metallocene-type polymerization kinetics, including catalyst activation, initiation, chain propagation, chain transfer, and termination steps. In addition, kinetic constants of polymerization reaction model were calculated. Calculation results of catalyst activity and molecular weight were compared with experimental results, indicating their good correlation. Moreover, the conventional polymerization was modified to accurately predict the molecular weight behaviors under various reaction conditions with the proposed transfer-effect model. Exactly, how reaction time, pressure, catalyst concentration, and cocatalyst ratio affect catalyst activity and molecular weight of the polymer were also discussed.  相似文献   

7.
A study of the effect of catalyst (base) concentration and N-acylcaprolactam cocatalyst size and substitution on the fast anionic polymerization of caprolactam indicated that a steric effect due to cocatalyst size exists, and perhaps an electronic effect due to cocatalyst substitution was noted. The rate of polymerization, degree of polymerization, and yield of polymer are related to these effects. It was also noted that at high base concentrations, the rate and degree of polymerization along with the product yields all decrease. These latter observations suggest that reinterpretation of some of the reaction mechanism data may be important if polymer degradation is not an appreciable factor during the reaction.  相似文献   

8.
This article is regarding the polymerization of 1,3‐butadiene with a neodymium catalyst activated by diisobutylaluminum‐hydride and diethylaluminum chloride (DEAC). The effects of the polymerization conditions (ratio between DEAC and neodymium molar concentrations, polymerization temperature, catalyst concentration, and butadiene concentration) on the polymer yield and molecular weight distribution (MWD) of polybutadiene (PB) samples were evaluated. It is shown that the DEAC/Nd ratio and the polymerization temperature are the reaction variables that influence the MWD and the catalyst performance most significantly. PBs with broad and sometimes bimodal MWD were produced at the analyzed reaction conditions. For this reason, the MWD of the obtained polymer materials was deconvoluted with the help of the Flory most probable distribution, indicating that three or more catalyst sites are required to explain the final MWD of the polymer samples. Finally, it was observed that the analyzed neodymium catalyst is able to produce branched PBs at mild reaction conditions and that the branching frequency depends on the polymerization conditions, which may be useful for development of operation policies at plant site and production of materials with improved performances. POLYM. ENG. SCI., 2011. © 2010 Society of Plastics Engineers  相似文献   

9.
Styrene (St) was polymerized in toluene solution by using bis(β‐ketoamino)nickel(II) complex as the catalyst precursor and methylaluminoxane (MAO) as the cocatalyst. The polymerization conditions, such as Al : Ni ratio, monomer concentration, reaction temperature, and polymerization time, were studied in detail. Both of the bis(β‐ketoamino)nickel(II)/MAO catalytic systems exhibited higher activity for polymerization of styrene, and polymerization gave moderate molecular weight of polystyrene with relatively narrow molecular weight distribution (Mw/Mn < 1.6). The obtained polymer was confirmed to be atactic polystyrene by analyzing the stereo‐triad distributions mm, mr, and rr of aromatic carbon C1 in NMR spectrum of the polymer. The mechanism of the polymerization was also discussed and a metal–carbon coordination mechanism was proposed. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

10.
Catalysts have a major role in the polymerization of olefins and exert their influence in three ways: (1) polymerization behaviour, including polymerization activity and kinetics; (2) polymer particle morphology, including bulk density, particle size, particle size distribution and particle shape; and (3) polymer microstructure, including molecular weight regulation, chemical composition distribution and short‐ and long‐chain branching. By tailoring the catalyst structure, such as the creation of a bridge or introducing a substituent on the ligand, metallocene catalysts can play a major role in the achievement of desirable properties. Kinetic profiles of the metallocene catalyst used in this study showed decay‐type behaviour for copolymerization of ethylene/α‐olefins. It was observed that increasing the comonomer ratio in the feedstock affected physical properties such as reducing the melting temperature, crystallinity, density and molecular weight of the copolymers. It was also observed that the heterogeneity of the chemical composition distribution and the physical properties were enhanced as the comonomer molecular weight was increased. In particular, 2‐phenyl substitution on the indenyl ring reduced somewhat the melting point of the copolymers. In addition, the copolymer produced using bis(2‐phenylindenyl)zirconium dichloride (bis(2‐PhInd)ZrCl2) catalyst exhibited a narrower distribution of lamellae (0.3–0.9 nm) than the polymer produced using bisindenylzirconium dichloride catalyst (0.5–3.6 nm). The results obtained indicate that the bis(2‐PhInd)ZrCl2 catalyst showed a good comonomer incorporation ability. The heterogeneity of the chemical composition distribution and the physical properties were influenced by the type of comonomer and type of substituent in the catalyst. Copyright © 2010 Society of Chemical Industry  相似文献   

11.
A series of Ni(II)-based bidentate -diimine complexes bearing two alkyl (alkyl = methyl, ethyl and isopropyl) substituents on each imine aryl group were studied as precatalysts for the polymerization of ethylene. These new catalysts were observed to show high activity in combination with methyl aluminoxane (MAO) and produced high molecular weight polyethylenes. The effects of the steric bulk of ortho-aryl substituents of the ligand on the catalytic activity and the resulting polyethylene microstructure were investigated. Kinetics of polymerization was also studied by changing important parameters such as temperature and MAO concentration. The polymerization activity, polymer molecular weight and resulting polymer microstructure were drastically changed according to the catalyst structure modification and polymerization parameters.  相似文献   

12.
以自制的限定几何构型茂金属催化剂为主催化剂,甲基铝氧烷为助催化剂,对乙烯/1-己烯共聚性能进行研究,考察溶剂、Al与Zr物质的量比、聚合温度、聚合压力和共聚单体浓度等工艺条件对催化剂活性以及聚合物性能的影响。确定乙烯/1-己烯共聚合的工艺条件为:以正庚烷为溶剂,Al与Zr物质的量比为700~1 000,聚合温度(100~120)℃,聚合压力(1.2~2.0)MPa,优选1-己烯浓度为(0.8~1.8)mol·L~(-1)。  相似文献   

13.
The late transition metal catalyst of [2,6-diacethylpyridinebis(2,6-diisopropylphenylimine)]cobalt(II) dichloride was prepared under controlled conditions and used for polymerization of ethylene. Methylaluminoxane (MAO) and triisobuthylaluminum (TIBA) were used as a cocatalyst and a scavenger, respectively. The highest activity of the catalyst was obtained at about 30°C; the activity decreased with increasing temperature. At polymerization temperatures higher than 50°C not only was a sharp decrease in the activity observed but also low molecular weight polyethylene product that was oily in appearance was obtained. The polymerization activity increased with increasing both of the monomer pressure and [MAO]:[Co] ratio. However, fouling of the reactor was strongly increased with increasing both of the monomer pressure and the amount of MAO used for the homogeneous polymerization. Hydrogen was used as the chain transfer. The activity of the catalyst and the viscosity average molecular weight (Mv) of the polymer obtained were not sensitive to hydrogen concentration. However, the viscosity average molecular weight of the polymer decreased with the monomer pressure. The (Mv), the melting point, and the crystallinity of the resulting polymer at the monomer pressure of 1 bar and polymerization temperature of 20°C were 1.2 × 105, 133°C, and 67%, respectively. Heterogeneous polymerization of ethylene using the catalyst and the MAO/SiO2 improved morphology of the resulting polymer; however, the activity of the catalyst was also decreased. Fouling of the reactor was eliminated using the supported catalyst system.  相似文献   

14.
In propene polymerization over the MgCl2-supported TiCl4/dioctylphthalate (DOP) catalyst, the weight- and number-average molecular weights and the molecular weight distribution (MWD) of polypropene products and of the isotactic and atactic polymer portions were studied. The average molecular weights and MWD were found to be independent of time. The isotactic polymer had higher molecular weight and broader distribution than the atactic portion by almost an order of magnitude. An increase in temperature and cocatalyst/catalyst ratio resulted in lowering molecular weight due to increasing transfer reaction. Alkyl aluminum was used as a cocatalyst, and the molecular weight did not vary significantly with different alkyl groups. Of the three external bases studied, 2,2,6,6-tetramethyl piperidine (TMPIP), dimethoxydiphenyl silane (DMDPS), and t-butylmethyl ether (TBME), the addition of a small amount of one of the first two bases caused a substantial increase in both molecular weight and polydispersity of the isotactic polymer. Those increases leveled off quickly with increasing amounts of the external base. On the other hand, both average molecular weights and polydispersity of the atactic polymer decreased with a net increase in the molecular weight of the whole polymer. TBME, however, has no significant effect on either molecular weight or MWD. These effects are discussed in the context of the roles of the external base in propene polymerization. © 1995 John Wiley & Sons, Inc.  相似文献   

15.
Styrene polymerization was carried out with Ni(acac)2/MAO and Ni(acac)2/SiO2/MAO. The influence of reaction parameters (Al/Ni mole ratio, catalyst concentration, temperature and time polymerization) on styrene polymerization was evaluated. It was observed that both catalytic systems were affected by reaction parameters and that the heterogeneous catalyst presented higher activity than the homogeneous one. Polystyrenes with different molecular weight, stereoregularity and polydispersity were obtained. These results suggest that different active catalyst species could have been present. In addition, two types of methylaluminoxane (MAO) with different molecular weights were also evaluated as cocatalyst. As a result, the catalyst activity and stereospecificity were strongly affected by the MAO type.  相似文献   

16.
In this work, we propose a modified frontal polymerization method to build a uniform reaction front by gradually immersing the reacting mixture in a thermal bath. This scheme allows uniform materials to be obtained with nearly constant molecular weights and polydispersities and a low residual monomer concentration. A comparative study of the molecular weight distributions of poly(methyl methacrylate)s obtained by bulk polymerization, frontal polymerization, and frontal polymerization with the proposed gradual immersion is presented. Samples obtained by these methods show that materials obtained by bulk polymerization and by frontal polymerization are less uniform than those obtained by frontal polymerization with gradual immersion in a thermal bath. The obtained uniformity is directly related to a stabilizing effect of the reaction front by the gradual immersion of the reactor in a constant‐temperature bath and to a reduction in the reaction rate promoted by a moderate transfer agent concentration. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

17.
The radiation-induced polymerization of ethylene was carried out by use of a benchscale plant with a flow-type reactor of 1 liter capacity under the following conditions: pressure, 200–400 kg/cm2; temperature, 30–90°C; irradiation intensity, 3.8 × 105 rad/hr; and ethylene flow rate, 300–3000 nl/hr. The molecular weight of polymer formed was shown to decrease with increasing reaction temperature and to increase with increasing pressure. When the ethylene flow rate increases, the molecular weight decreases in the polymerization at 30–60°C, but it does not change in the polymerization at 75–90°C. Methyl group content, which is a measure of short-chain branching of the polymer, increases with increasing reaction temperature, i.e., ca. 1 CH3/1000 CH2 at 30°C and ca. 9 CH3/1000 CH2 at 90°C. Methyl content is independent of the ethylene flow rate. The changes in the melt index of polymer with reaction conditions corresponds to the change of the molecular weight. The density, crystallinity, and melting point of polymer decrease with the reaction temperature as the short-chain branching increases, and they are almost independent of ethylene flow rate and pressure.  相似文献   

18.
Ethylene polymerization with bis(imino)pyridlyiron precatalysts generally produces linear polyethylene (PE) even with the presence of α-olefins because α-olefins are not incorporated into polymeric products. Interestingly, α-olefins, such as hexene-1 or butene-1, have been found to act as effective chain transfer agents in the ethylene polymerization promoted by nonsymmetrical bis(imino)pyridyliron complexes with modified methylalumoxane (MMAO), resulting in higher catalytic activities with higher amounts of polymers with lower molecular weights, and, more importantly, narrower molecular weight distributions of the resultant polyethylenes (PE). This phenomenon confirms the assistance of α-olefins in the chain-termination reaction of iron-initiated polymerization and regeneration of the active species for further polymerization. Besides higher activities of the catalytic system, the formation of linear PE with trans-vinylene terminal groups and lower molecular weights are explained. The observation will provide a new pathway for enhancing catalytic activity and improving the quality of polyethylenes obtained by regulation of molecular weights and molecular weight distribution.  相似文献   

19.
The dendritic Fréchet‐type polyarylether 2‐bromoisobutyrates (Gn‐Br, n = 1–3) as macroinitiators for the ‘living’/controlled radical polymerization of styrene (St) and methyl methacrylate (MMA) were investigated. The atom transfer radical polymerization of St and MMA carried out with CuBr/bpy (2,2′‐bipyridine) catalyst in bulk yielded well‐defined dendritic–linear diblock copolymers (Gn–PSt and Gn–PMMA). The use of G3–PSt for the block copolymerization of MMA and G3–PMMA for the chain extension polymerization of MMA in the presence of CuBr/bpy catalyst is also described. The triblock copolymers obtained were of predetermined molecular weights and relatively low polydispersities, which indicates the living nature of the reaction system. © 2002 Society of Chemical Industry  相似文献   

20.
A mesoporous molecular sieve MCM‐41 supported iron‐based diimine catalyst ( MC ) was prepared for the first time. The kinetic behavior of ethylene polymerization with MC was studied. The effects of Al/Fe molar ratio and various cocatalysts on the catalytic activity and properties of the polyethylene obtained were investigated. The results showed that good catalytic activities can be reached with cocatalyst methylaluminoxane (MAO) and triethylaluminium (TEA). Ethylene polymerization with MC gave polymers with higher molecular weight, melting temperature and onset temperatures of decomposition (Tonset) and better morphology than those obtained with the corresponding homogeneous catalyst. Copyright © 2004 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号