首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of antimicrobial edible film is proposed as a means of improving food safety and extending the shelf-life of food systems by controlling the release of antimicrobials on food surfaces. In this work we first selected and studied 8 different essential oils (EOs) from plants, namely, oregano, clove, tea tree, coriander, mastic thyme, laurel, rosemary, and sage as natural antimicrobials against 2 gram-positive bacteria (Listeria innocua and Staphylococcus aureus) and 2 gram-negative bacteria (Salmonella enteritidis and Pseudomona fragi) by using the agar disk diffusion method. EOs from oregano, clove, and tea tree produced the largest surfaces of inhibition against the growth of the 4 bacterial strains tested. Second and following the assessment of compatibility, stable antimicrobial edible films based on whey protein isolate (WPI) with increasing concentrations (0.5% to 9%) of the 8 EOs were developed and tested for antimicrobial activity against the same gram-positive and gram-negative bacteria. WPI-edible films incorporating oregano or clove EO were found to have the most intense inhibitory effect of microbial growth. The bacterial strain gram-negative P. fragi presented the less susceptibility to the effect of those films. Moreover, only the edible films based on these 2 EOs were active against all 4 studied microorganisms. On the other hand, the edible films incorporating tea tree, coriander, mastic thyme, laurel, rosemary, or sage EOs even at high concentrations (7% to 9%) did not cause any antimicrobial effect against the pathogens S. aureus or S. enteritidis. PRACTICAL APPLICATION: Potential applications of this technology can introduce direct benefits to the food industry by improving safety and microbial product quality. The results of this research have direct application in the food industry with potential applications in various foodstuffs, including meat and poultry products where the control of spoilage bacteria such as P. fragi throughout their chilled storage or the improvement of food safety by controlling pathogens such as S. enteritidis are topics of particular interest for the industry.  相似文献   

2.
The aim of this study was to evaluate the antimicrobial efficacy of selected plant essential oil (EO) combinations against four food-related microorganisms. Ten EOs were initially screened against Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Saccharomyces cerevisiae using agar disk diffusion and broth dilution methods. The highest efficacy against all the tested strains was shown when testing the oregano EO. EOs of basil and bergamot were active against the Gram-positive bacteria (S. aureus and B. subtilis), while perilla EO strongly inhibited the growth of yeast (S. cerevisiae). The chemical components of selected EOs were also analyzed by GC/MS. Phenols and terpenes were the major antimicrobial compounds in oregano and basil EOs. The dominant active components of bergamot EO were alcohols, esters and terpenes. For perilla EO, the major active constituents were mainly ketones. The checkerboard method was then used to investigate the antimicrobial efficacy of EO combinations by means of the fractional inhibitory concentration index (FICI). Based on an overall consideration of antimicrobial activity, organoleptic impact and cost, four EO combinations were selected and their MIC values were listed as follows: oregano–basil (0.313–0.313 μl/ml) for E. coli, basil–bergamot (0.313–0.156 μl/ml) for S. aureus, oregano–bergamot (0.313–0.313 μl/ml) for B. subtilis and oregano–perilla (0.313–0.156 μl/ml) for S. cerevisiae. Furthermore, the mechanisms of the antimicrobial action of EO combinations to the tested organisms were studied by the electronic microscopy observations of the cells and the measurement of the release of cell constituents. The electron micrographs of damaged cells and the significant increase of the cell constituents' release demonstrated that all EO combinations affected the cell membrane integrity.  相似文献   

3.
The objectives of this study were to evaluate the antimicrobial activity of plant essential oils (EOs) against foodborne pathogens and key spoilage bacteria pertinent to ready-to-eat vegetables and to screen the selected EOs for sensory acceptability. The EOs basil, caraway, fennel, lemon balm, marjoram, nutmeg, oregano, parsley, rosemary, sage, and thyme were evaluated. The bacteria evaluated were Listeria spp., Staphylococcus aureus, Lactobacillus spp., Bacillus cereus, Salmonella, Enterobacter spp., Escherichia coli, and Pseudomonas spp. Quantitative antimicrobial analyses were performed using an absorbance-based microplate assay. Efficacy was compared using MIC, the half maximum inhibitory concentration, and the increase in lag phase. Generally, gram-positive bacteria were more sensitive to EOs than were gram-negative bacteria, and Listeria monocytogenes strains were among the most sensitive. Of the spoilage organisms, Pseudomonas spp. were the most resistant. Oregano and thyme EOs had the highest activity against all the tested bacteria. Marjoram and basil EOs had selectively high activity against B. cereus, Enterobacter aerogenes, E. coli, and Salmonella, and lemon balm and sage EOs had adequate activity against L. monocytogenes and S. aureus. Within bacterial species, EO efficacy was dependent on strain and in some cases the origin of the strain. On a carrot model product, basil, lemon balm, marjoram, oregano, and thyme EOs were deemed organoleptically acceptable, but only oregano and marjoram EOs were deemed acceptable for lettuce. Selected EOs may be useful as natural and safe additives for promoting the safety and quality of ready-to-eat vegetables.  相似文献   

4.
W-X. Du    C.W. Olsen    R.J. Avena-Bustillos    T.H. McHugh    C.E. Levin    R. Mandrell    Mendel  Friedman 《Journal of food science》2009,74(7):M390-M397
ABSTRACT:  Physical properties as well as antimicrobial activities against  Escherichia coli  O157:H7,  Salmonella enterica , and  Listeria monocytogenes  of allspice, garlic, and oregano essential oils (EOs) in tomato puree film-forming solutions (TPFFS) formulated into edible films at 0.5% to 3% (w/w) concentrations were investigated in this study. Antimicrobial activities were determined by 2 independent methods: overlay of the film on top of the bacteria and vapor-phase diffusion of the antimicrobial from the film to the bacteria. The results indicate that the antimicrobial activities against the 3 pathogens were in the following order: oregano oil > allspice oil > garlic oil.  Listeria monocytogenes  was less resistant to EO vapors, while  E. coli  O157:H7 was more resistant to EOs as determined by both overlay and vapor-phase diffusion tests. The presence of plant EO antimicrobials reduced the viscosity of TPFFS at the higher shear rates, but did not affect water vapor permeability of films. EOs increased elongation and darkened the color of films. The results of the present study show that the 3 plant-derived EOs can be used to prepare tomato-based antimicrobial edible films with good physical properties for food applications by both direct contact and indirectly by vapors emanating from the films.  相似文献   

5.
The aim of this study was to optimise the antimicrobial efficacy of plant essential oils (EOs) for control of Listeria spp. and spoilage bacteria using food model media based on lettuce, meat and milk. The EOs evaluated were lemon balm, marjoram, oregano and thyme and their minimum inhibitory concentrations (MIC) were determined against Enterobacter spp., Listeria spp., Lactobacillus spp., and Pseudomonas spp. using the agar dilution method and/or the absorbance based microplate assay. MICs were significantly lower in lettuce and beef media than in TSB. Listeria strains were more sensitive than spoilage bacteria, and oregano and thyme were the most active EOs. EO combinations were investigated using the checkerboard method and Oregano combined with thyme had additive effects against spoilage organisms. Combining lemon balm with thyme yielded additive activity against Listeria strains. The effect of simple sugars and pH on antimicrobial efficacy of oregano and thyme was assessed in a beef extract and tomato serum model media. EOs retained greater efficacy at pH 5 and 2.32% sugar, but sugar concentrations above 5% did not negatively impact EO efficacy. In addition to proven antimicrobial efficacy, careful selection and investigation of EOs appropriate to the sensory profile of foods and composition of the food system is required. This work shows that EOs might be more effective against food-borne pathogens and spoilage bacteria when applied to foods containing a high protein level at acidic pH, as well as moderate levels of simple sugars.  相似文献   

6.
Antimicrobial agents can be incorporated into edible films to provide microbiological stability, since films can be used as carriers of a variety of additives to extend product shelf life and reduce the risk of microbial growth on food surfaces. Addition of antimicrobial agents to edible films offers advantages such as the use of small antimicrobial concentrations and low diffusion rates. The aim of this study was to evaluate inhibition by vapor contact of Aspergillus niger and Penicillium digitatum by selected concentrations of Mexican oregano (Lippia berlandieri Schauer), cinnamon (Cinnamomum verum) or lemongrass (Cymbopogon citratus) essential oils (EOs) added to amaranth, chitosan, or starch edible films. Essential oils were characterized by gas chromatography-mass spectrometry (GC/MS) analysis. Amaranth, chitosan and starch edible films were formulated with essential oil concentrations of 0.00, 0.25, 0.50, 0.75, 1.00, 2.00, or 4.00%. Antifungal activity was evaluated by determining the mold radial growth on agar media inoculated with A. niger and P. digitatum after exposure to vapors arising from essential oils added to amaranth, chitosan or starch films using the inverted lid technique. The modified Gompertz model adequately described mold growth curves (mean coefficient of determination 0.991 ± 0.05). Chitosan films exhibited better antifungal effectiveness (inhibition of A. niger with 0.25% of Mexican oregano and cinnamon EO; inhibition of P. digitatum with 0.50% EOs) than amaranth films (2.00 and 4.00% of cinnamon and Mexican oregano EO were needed to inhibit the studied molds, respectively). For chitosan and amaranth films a significant increase (p<0.05) of lag phase was observed among film concentrations while a significant decrease (p<0.05) of maximum specific growth was determined. Chitosan edible films incorporating Mexican oregano or cinnamon essential oil could improve the quality of foods by the action of the volatile compounds on surface growth of molds.  相似文献   

7.
Antimicrobial Activity of Chitosan Films Enriched with Essential Oils   总被引:4,自引:0,他引:4  
ABSTRACT: Antimicrobial and physicochemical properties of chitosan films and chitosan films enriched with essential oils (EO) were determined in vitro and on processed meat. Antimicrobial effects of pure EO of anise, basil, coriander, and oregano, and of chitosan-essential oil films against Listeria monocytogenes and Escheri-chia coli O157:H7 were determined by an agar diffusion test. The antibacterial effects of the EO were similar when applied alone or incorporated in the films. The intensity of antimicrobial efficacy was in the following order: oregano > > coriander > basil > anise. The chitosan films and chitosan-oregano EO films were applied on inoculated bologna samples and stored 5 d at 10 °C. Pure chitosan films reduced L. monocytogenes by 2 logs, whereas the films with 1% and 2% oregano EO decreased the numbers of L. monocytogenes by 3.6 to 4 logs and E. coli by 3 logs. Pure chitosan films were 89 μm thick, whereas addition of 1% and 2% oregano EO increased thickness to 220 and 318 μm, respectively. During application on bologna discs, the films absorbed moisture, resulting in the final thickness of 143, 242, and 333 μm, respectively. Addition of oregano essential oil into the chitosan films decreased water vapor permeability, puncture and tensile strength, but increased elasticity of the films. The films have the potential to be used as active biodegradable films with strong antimicrobial effects.  相似文献   

8.
Spices and herbal plant species have been recognized to possess a broad spectrum of active constituents that exhibit antimicrobial (AM) activity. These active compounds are produced as secondary metabolites associated with the volatile essential oil (EO) fraction of these plants. A wide range of AM agents derived from EOs have the potential to be used in AM packaging systems which is one of the promising forms of active packaging systems aimed at protecting food products from microbial contamination. Many studies have evaluated the AM activity of synthetic AM and/or natural AM agents incorporated into packaging materials and have demonstrated effective AM activity by controlling the growth of microorganisms. This review examines the more common synthetic and natural AM agents incorporated into or coated onto synthetic packaging films for AM packaging applications. The focus is on the widely studied herb varieties including basil, oregano, and thyme and their EOs.  相似文献   

9.
The objective of this study was to evaluate the efficacy of plant essential oils (EOs) in combination and to investigate the effect of food ingredients on their efficacy. The EOs assessed in combination included basil, lemon balm, marjoram, oregano, rosemary, sage and thyme. Combinations of EOs were initially screened against Bacillus cereus, Escherichia coli, Listeria monocytogenes and Pseudomonas aeruginosa using the spot-on-agar test. The influence of varying concentrations of EO combinations on efficacy was also monitored using E. coli. These preliminary studies showed promising results for oregano in combination with basil, thyme or marjoram. The checkerboard method was then used to quantify the efficacy of oregano, marjoram or thyme in combination with the remainder of selected EOs. Fractional inhibitory concentrations (FIC) were calculated and interpreted as synergy, addition, indifference or antagonism. All the oregano combinations showed additive efficacy against B. cereus, and oregano combined with marjoram, thyme or basil also had an additive effect against E. coli and P. aeruginosa. The mixtures of marjoram or thyme also displayed additive effects in combination with basil, rosemary or sage against L. monocytogenes. The effect of food ingredients and pH on the antimicrobial efficacy of oregano and thyme was assessed by monitoring the lag phase and the maximum specific growth rate of L. monocytogenes grown in model media. The model media included potato starch (0, 1, 5 or 10%), beef extract (1.5, 3, 6 or 12%), sunflower oil (0, 1, 5 or 10%) and TSB at pH levels of 4, 5, 6 or 7. The antimicrobial efficacy of EOs was found to be a function of ingredient manipulation. Starch and oils concentrations of 5% and 10% had a negative impact on the EO efficacy. On the contrary, the EOs were more effective at high concentrations of protein, and at pH 5, by comparison with pH 6 or 7. This study suggests that combinations of EOs could minimize application concentrations and consequently reduce any adverse sensory impact in food. However, their application for microbial control might be affected by food composition, therefore, careful selection of EOs appropriate to the sensory and compositional status of the food system is required. This work shows that EOs might be more effective against food-borne pathogens and spoilage bacteria when applied to ready to use foods containing a high protein level at acidic pH, as well as lower levels of fats or carbohydrates.  相似文献   

10.
The use of edible films to release antimicrobial constituents in food packaging is a form of active packaging. Antimicrobial properties of spice extracts are well known, however their application to edible films is limited. In this study, antimicrobial properties of whey protein isolate (WPI) films containing 1.0–4.0% (wt/vol) ratios of oregano, rosemary and garlic essential oils were tested against Escherichia coli O157:H7 (ATCC 35218), Staphylococcus aureus (ATCC 43300), Salmonella enteritidis (ATCC 13076), Listeria monocytogenes (NCTC 2167) and Lactobacillus plantarum (DSM 20174). Ten millilitres of molten hard agar was inoculated by 200 μl of bacterial cultures (colony count of 1 × 108 CFU/ml) grown overnight in appropriate medium. Circular discs of WPI films containing spice extracts, prepared by casting method, were placed on a bacterial lawn. Zones of inhibition were measured after an incubation period. The film containing oregano essential oil was the most effective against these bacteria at 2% level than those containing garlic and rosemary extracts (P < 0.05). The use of rosemary essential oil incorporated into WPI films did not exhibit any antimicrobial activity whereas inhibitory effect of WPI film containing garlic essential oil was observed only at 3% and 4% level (P < 0.05). The results of this study suggested that the antimicrobial activity of some spice extracts were expressed in a WPI based edible film.  相似文献   

11.
The antimicrobial activity of the essential oils (EOs) from cinnamon bark, oregano, mustard, and of their major components cinnamaldehyde, carvacrol, and allyl isothiocyanate (AIT) was evaluated as a gaseous treatment to reduce Salmonella enterica serovar Typhimurium in vitro and on tomatoes. In vitro tests showed that mustard EO and AIT had the greatest inhibition of Salmonella, followed by cinnamon EO and cinnamaldehyde, while oregano and carvacrol showed the least inhibition. Scanning electron microscopy images of S. Typhimurium on tomatoes suggest that the EOs and their major components damaged the bacteria, and the damage was more obvious after posttreatment storage at 10 °C for 4 and 7 d. Salmonella on inoculated tomatoes was reduced by more than 5 log colony forming units (CFU)/g by mustard EO and AIT, by 4.56 and 3.79 log CFU/g following cinnamon EO and cinnamaldehyde treatments, respectively, and 1.54 and 3.37 log CFU/g after oregano EO and carvacrol treatments, respectively. Mustard EO and AIT induced discoloration, softening, and loss of the vitamin C and lycopene during 21 d of storage at 10 °C, while treatment with cinnamon EO and cinnamaldehyde did not result in significant changes in tomato quality. Tomatoes treated with oregano EO had better quality than nontreated samples after storage. Therefore, treatment with cinnamon and oregano EO and their major components appeared to be feasible for inactivation of Salmonella on tomatoes and maintaining quality.  相似文献   

12.
Polylactide (PLA) is the most mature biobased and biodegradable polymer. Due to its inherent brittleness, the polymer cannot be used as a packaging material without plasticizer. An attempt was made to develop antimicrobial plasticized PLA film by incorporating polyethylene glycol (PEG) and 3 essential oils (EO), namely cinnamon, garlic, and clove by solvent casting method. Physical, thermal, and rheological properties of those films were evaluated for practical applications whereas the antimicrobial properties were tested against Staphylococcus aureus and Campylobacter jejuni—pathogens related to poultry industry. Both PEG and EOs led to the formation of flexible PLA/PEG/EO films with significant drop in the glass transition temperature (Tg), and mechanical property. Time–temperature superposition (TTS) principle was employed to melt rheology of EO‐based films at selected temperature, and rheological moduli superimposed well in an extended frequency range. Among EOs, cinnamon and clove oil–based films (PLA/PEG/CIN and PLA/PEG/CLO) exhibited a complete zone of inhibition against C. jejuni at the maximum concentration (1.6 mL per 2 g PLA/PEG blend) whereas the garlic oil–based film (PLA/PEG/GAR) had the lowest activity.  相似文献   

13.
The antimicrobial potential of whey protein isolate (WPI) edible films containing 1–4% (v/v) Zataria multiflora Boiss. essential oil (EO) on food‐borne pathogenic bacteria (Escherichia coli, Salmonella enteritidis, Staphylococcus aureus and Bacillus cereus) and probiotic bacteria (Lactobacillus acidophilus, Lactobacillus rhamnosus, Lactobacillus plantarum and Lactobacillus casei subsp. casei) was evaluated. WPI films incorporated with 2% (v/v) of this EO inhibited the growth of all tested pathogenic bacteria and gram‐negative bacteria were more sensitive than gram‐positive bacteria. Incorporation of the EO at higher than 2% (v/v) showed significant antimicrobial effects (P < 0.05) for S. enteritidis and L. acidophilus. The growth of all probiotic lactic acid‐producing bacteria also inhibited when 2% of the EO was added. Comparison of an image processing‐based method with conventional method for measuring of inhibitory effects of edible films exhibited high correlations (R2 ≥ 0.876) between the two methods. These results revealed that Z. multiflora Boiss. EO is a good antimicrobial additive for some food applications when included into WPI edible films.  相似文献   

14.
The objective in this study was to evaluate the antifungal activity of essential oils from native and commercial aromatic plants grown in Argentina against corn postharvest fungi and to link the essential oil bioactivity with lipid oxidation and morphological changes in fungus cell membrane. Essential oil (EO) of oregano variety Mendocino (OMen), Cordobes (OCor), and Compacto (OCom), mint variety Inglesa (Mi), and Pehaujo (Mp), Suico (Sui); rosemary (Ro), and Aguaribay (Ag) were tested in vitro against 4 corn fungi: A. flavus (CCC116–83 and BXC01), P. oxalicum (083296), and P. minioluteum (BXC03). The minimum fungicidal concentration (MFC) and the minimum inhibitory concentration (MIC) were determined. The chemical profiles of the EOs were analyzed by GC‐MS. Lipid oxidation in cell membrane of fungi was determined by hydroperoxides and related with essential oil antifungal activity. The major compounds were Thymol in OCor (18.66%), Omen (12.18%), and OCom (9.44%); menthol in Mi and Mp; verbenone in Sui; dehydroxy‐isocalamendiol in Ag; and eucaliptol in Ro. OCor, Omen, and OCom showed the best antifungal activity. No antifungal activity was observed in Ag and Ro EO. The hydroperoxide value depended on the fungi (P < 0.001) and the antimicrobial agent (P < 0.001).Membrane lipids were oxidized by Sui EO in A. flavus BXC01 and A. flavus CCC116–83 (0.021 and 0.027 meqO2/kg, respectively). The results suggest that the EOs of OCor, OMen, OCom, Mi, Mp, and Sui grown in Argentina can be used as natural alternatives to control fungi that produce mycotoxin in maize.  相似文献   

15.
The use of edible antimicrobial films has been reported as a means to improve food shelf life through gradual releasing of antimicrobial compounds on the food surface. This work reports the study on the incorporation of 2 antimicrobial agents, nisin (N), and/or glucose oxidase (GO), into the matrix of Whey protein isolate (WPI) films at pH 5.5 and 8.5. The antimicrobial activity of the edible films was evaluated against Listeria innocua (ATCC 33090), Brochothrix thermosphacta (NCIB10018), Escherichia coli (JMP101), and Enterococcus faecalis (MXVK22). In addition, the antimicrobial activity was related to the hydrophobicity and water solubility of the WPI films. The greatest antibacterial activity was observed in WPI films containing only GO. The combined addition of N and GO resulted in films with lower antimicrobial activity than films with N or GO alone. In most cases, a pH effect was observed as greater antimicrobial response at pH 5.5 as well as higher film matrix hydrophobicity. WPI films supplemented with GO can be used in coating systems suitable for food preservation.  相似文献   

16.
The solubilization behaviour of a number of essential oils (EOs) containing volatile phenolic constituents was investigated in five different micellar solutions. These oils include clove bud (Eugenia caryophyllata), thyme (Thymus serpyllum) and oregano (Thymus capitatus). Ternary and pseudo‐ternary phase diagrams were constructed to assess the ability for microemulsion formation and dilutability of each system using non‐ionic surfactants. Results showed that Tween 20 (T20) was more suitable to solubilize these oils compared with Tween 80 (T80). Clove EO was found to be easily microemulsifiable compared with the other EOs, whereas oregano showed the least tendency to form a microemulsion. Particle sizes measured at different dilution lines ranged between 5.9 and 16.9 nm. The chemical composition of each EO was revealed by gas chromatography and was correlated with the observed solubilization behaviour. The presence of solubilization enhancers like poly‐ols and short‐chain alcohols improved solubilization of all EOs; however, establishment of new dilution lines was controlled by EO type. Physical stability assessment showed that all microemulsions were stable against alternate freeze/thaw cycles which extended for 1 week. On the contrary, each system showed different temperature sensitivity in the thermal stress assessment. The results of this investigation can be useful in fabrication of thermodynamically stable aqueous system carrying aromatic and bioactive phenolics for different applications in personal hygiene, cosmetic, fragrance and pharmaceutical products.  相似文献   

17.
Antimicrobial activity of fractions obtained from Mexican oregano (Lippia berlandieri Schauer) chloroform extract was tested by growth inhibition against Escherichia coli, Staphylococcus aureus and Bacillus cereus, and antioxidant capacity was tested by inhibition of linoleic acid oxidation. Fractions were obtained by differences in polarity or structure (phenolic and non-phenolic fraction). Gram-positive organisms were more susceptible to Mexican oregano extracts. Fraction 3 (by polarity) and phenolic fractions I, II, III, IV and V were the extracts with higher antimicrobial activity. The non-phenolic fraction had effect against B. cereus. Polarity fraction 5 and phenolic Fraction II had a high antioxidant capacity; a 0.08% concentration of fraction 5 had a similar effect as butylated hydroxytoluene at 0.01% concentration. Fractions of Mexican oregano with different polarity and functional groups had antioxidant and antimicrobial activity and can be used in a variety of applications.  相似文献   

18.
The objectives of this study were to evaluate the efficacy of plant essential oils (EOs) for control of the natural spoilage microflora on ready-to-eat (RTE) lettuce and carrots whilst also considering their impact on organoleptic properties. Initial decontamination effects achieved using EOs were comparable to that observed with chlorine and solution containing oregano recorded a significantly lower initial TVC level than the water treatment on carrots (p < 0.05). No significant differences were found between the EO treatments and chlorine considering gas composition, color, texture and water activity of samples. The sensory panel found EO treatments acceptable for carrots throughout storage, while lettuce washed with the EO solutions were rejected for overall appreciation by Day 7. Correlating microbial and sensory changes with volatile emissions identified 12 volatile quality markers. Oregano might be a suitable decontamination alternative to chlorine for RTE carrots, while the identification of volatile quality markers is a useful complement to sensory and microbiological assessments in the monitoring of organoleptic property changes and shelf-life of fresh vegetables.Industrial relevanceThere is industrial demand for natural alternatives to chlorine, which is commonly used for decontamination of fresh produce but which has limitations with respect to antimicrobial efficacy and possible formation of carcinogenic compounds in water. Plant essential oils have proven antimicrobial and other bioactive properties, however their usefulness in foods can be mitigated by their high sensory impact. This study examined the application of EOs for fresh produce decontamination addressing control of spoilage microflora and improving shelf-life characteristics whilst also considering the impact on organoleptic properties. The effectiveness of oregano as a decontamination treatment was comparable with that of chlorine. Carrot discs treated with the EO regimes were acceptable in terms of sensory quality and appreciation, therefore oregano could offer a natural alternative for the washing and preservation of fresh produce. Combining EOs with other natural preservatives might minimize doses and reduce the impact on organoleptic properties of fresh vegetables.  相似文献   

19.
ABSTRACT:  Essential oils (EOs) derived from plants are rich sources of volatile terpenoids and phenolic compounds. Such compounds have the potential to inactivate pathogenic bacteria on contact and in the vapor phase. Edible films made from fruits or vegetables containing EOs can be used commercially to protect food against contamination by pathogenic bacteria. EOs from cinnamon, allspice, and clove bud plants are compatible with the sensory characteristics of apple-based edible films. These films could extend product shelf life and reduce risk of pathogen growth on food surfaces. This study evaluated physical properties (water vapor permeability, color, tensile properties) and antimicrobial activities against  Escherichia coli  O157:H7,  Salmonella enterica,  and  Listeria monocytogenes  of allspice, cinnamon, and clove bud oils in apple puree film-forming solutions formulated into edible films at 0.5% to 3% (w/w) concentrations. Antimicrobial activities were determined by 2 independent methods: overlay of the film on top of the bacteria and vapor phase diffusion of the antimicrobial from the film to the bacteria. The antimicrobial activities against the 3 pathogens were in the following order: cinnamon oil > clove bud oil > allspice oil. The antimicrobial films were more effective against  L. monocytogenes  than against the  S. enterica . The oils reduced the viscosity of the apple solutions and increased elongation and darkened the colors of the films. They did not affect water vapor permeability. The results show that apple-based films with allspice, cinnamon, or clove bud oils were active against 3 foodborne pathogens by both direct contact with the bacteria and indirectly by vapors emanating from the films.  相似文献   

20.
The in vitro effects of plant essential oils (EOs) against pathogenic bacteria are well known, yet few studies have addressed the effects of these compounds against pathogens associated with ready-to-cook foods. Experiments were conducted to determine the effectiveness of oregano and nutmeg EOs on the growth and survival of Yersinia enterocolitica and Listeria monocytogenes in broth culture and in Iranian barbecued chicken. Ready-to-cook Iranian barbecued chicken was prepared according to the common practice with 1, 2, and 3 microl/g of oregano and nutmeg EOs. The test and control (without EOs) samples were inoculated with Y. enterocolitica and L. monocytogenes to a final concentration of 6 to 7 log CFU/g and stored at 3, 8, and 20 degrees C. Microorganisms were counted just before and at 24, 48, and 72 h after storage based on growth on Yersinia selective agar supplemented with cefsulodine, igrasan, and novobiocin and on Listeria selective agar supplemented with nalidixic acid and acriflavin. In the broth culture system, the nutmeg EO had a greater effect on L. monocytogenes (MIC = 0.20 nicrol/ml) than did the oregano EO (MIC = 0.26 microl/ml). However, the oregano EO had a greater effect on Y. enterocolitica (MIC = 0.16 microl/ml) than did the nutmeg EO (MIC = 0.25 microl/ml). In ready-to-cook Iranian barbecued chicken, the log CFU per gram of both bacteria after up to 72 h of incubation was not decreased significantly by various combinations of oregano and nutmeg EOs (1, 2, and 3 microl/g) and storage temperatures (3, 8, and 20 degrees C) when compared with control samples (without EOs). Although examination of spices in culture media can yield accurate microbiological data, without complementary tests in foods these data are of limited value for assessing food safety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号