首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ambient zinc‐containing ionic liquids, MX‐ZnCl2, functioning as both Lewis acid catalyst and green solvent, are employed for a high regioselective Diels–Alder reaction of myrcene with acrolein for the first time, where MX is either 1‐butyl‐3‐methylimidazolium chloride (BmimCl), 1‐ethyl‐3‐methylimidazolium bromide (EmimBr), N‐butylpyridinium bromide (BPyBr), or N‐ethylpyridinium bromide (EtPyBr). Compared with the analogous reaction performed over a ZnCl2 catalyst in the conventional solvent dichloromethane, higher regioselectivity of the ‘para’ cycloadduct and excellent yield were achieved at shorter reaction time in these ionic liquids with optimized molar compositions of MX and ZnCl2. These moisture‐insensitive ionic liquids can be easily separated from reaction products after simple washing with hexane, allowing their reuse with no obvious loss in activity.  相似文献   

2.
In this research, ethylene polymerization was carried out in the presence of different additives (ZnCl2, SiCl4, and the combined ZnCl2‐SiCl4) on TiCl4/MgCl2/THF catalytic system. The presence of ZnCl2‐SiCl4 mixtures showed higher activity in ethylene polymerization when compared with the catalytic activity in the presence of single Lewis acids, ZnCl2, or SiCl4. The modified catalyst with ZnCl2‐SiCl4 demonstrated the highest activity, which was more than three times the activity of the system without Lewis acid modification. The enhanced activity can be attributed to the reduction in the peak intensity of MgCl2/THF complexes with Lewis acid compounds as proven by XRD. This was reasonable because of some THF removal from the structure of MgCl2/THF by Lewis acid compounds. In addition to the effect of modification with additives on the partial elimination of THF, the catalytic activities could be increased due to the titanium atoms that have been locally concentrated on the surface as seen by energy dispersive X‐ray spectroscopy measurement. On the basis of the in situ electron spin resonance measurement, the mixed metal chlorides (ZnCl2‐SiCl4) addition could promote the amount of Ti3+after reduction with triethylaluminum. It revealed that the modification of TiCl4/MgCl2/THF catalytic system with mixed metal chlorides (ZnCl2‐SiCl4) is very useful for ethylene polymerization. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1588–1594, 2013  相似文献   

3.
A hexa‐substituted ethane thermal iniferter, diethyl‐2,3‐dicyano‐2,3‐di(p‐tolyl) succinate (DCDTS), was firstly used as the initiator in the reverse atom transfer radical polymerization (RATRP) of acrylonitrile. FeCl3 coordinated by isophthalic acid (IA) was used as the catalyst in this system. The polymerization in N,N‐dimethylformamide not only shows the best control of molecular weight and its distribution but also provides rather rapid reaction rate with the ratio of [AN] : [DCDTS] : [FeCl3] : [IA] at 500 : 1 : 2 : 4. The polymers obtained were end‐functionalized by chlorine atom, and they were used as macroinitiators to proceed the chain extension polymerization in the presence of FeCl2/IA catalyst system via a conventional ATRP process and polyacrylonitrile obtained was with Mn = 39,260, PDI = 1.25. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

4.
The polymerizations of N,N′‐bismaleimide‐4,4′‐diphenylmethane (BMI) initiated by barbituric acid (BTA) carried out in a variety of solvents at 130°C were studied. The nitrogen‐containing cyclic solvents such as N‐methyl‐2‐pyrrolidinone acted as a catalyst to promote the formation of the three‐dimensional crosslinked network structure. By contrast, the polymerization in a cyclic solvent that did not contain nitrogen such as γ‐butyrolactone resulted in nil gel content. The higher the solvent basicity, the larger the amount of insoluble polymer species formed. The molar ratio of BTA to BMI also played an important role in the polymerizations. The resultant polymers, presumably having a hyper‐branched structure, exhibited much narrower molecular weight distributions than those prepared by conventional free radical polymerizations. The BMI polymerizations using BTA as the initiator could not be adequately described by conventional free radical polymerization mechanisms. A polymerization mechanism that took into account the generation of a ketone radical pair between BTA and BMI and the subsequent initiation, propagation and termination reactions was proposed. It was concluded that the nitrogen‐containing cyclic solvents were capable of participating in the ketone radical pair formation process, thereby increasing the extent of polymer crosslinking reactions. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
Poly (vinylidene fluoride‐co‐hexafluoropropylene) P(VDF‐co‐HFP) is an excellent material for polymer electrolytes of lithium ion battery. To enhance the lithium ion transference number, some metal oxides were often embedded into P(VDF‐co‐HFP). The promising mechanism for the increase in lithium ionic conductivity was Lewis acid‐base theory. In this experiment, the Lewis acid–base properties of P(VDF‐co‐HFP) were measured by inverse gas chromatography (IGC). The Lewis acid constant Ka of P(VDF‐co‐HFP) is 0.254, and the base constant Kb is 1.199. Compared with other polymers characterized by IGC, P(VDF‐co‐HFP) is the strongest Lewis basic polymers. Except aluminum ion, lithium ion is the strongest Lewis acidic ion according to their η value of Lewis acids. Therefore, a strong Lewis acid–base interaction will exist between lithium ion and P(VDF‐co‐HFP). This will restrict the transference of lithium ion in P(VDF‐co‐HFP). To enhance the lithium ion transference by blending other metal ions into P(VDF‐co‐HFP), it is suggested that the preferential ions should be Al3+, Mg2+, Na+, and Ca2+ because these metal ions have relative large η values. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

6.
Technology of industrial production of liquid rubber under trademark “SKOP” is based on the cationic polymerization of 1,3‐penadiene (piperylene) in the presence of TiCl4 or AlCl3‐based catalytic systems. The disadvantage of these catalytic systems is the high probability of formation of branched and insoluble fractions due to the chain transfer to polymer. This deteriorates the useful qualities of SKOP. Here we propose the new initiating systems for the cationic polymerization of 1,3‐pentadiene based on the homogeneous (dissolved in a minimal amount of diethyl ether) zinc halides (ZnCl2 and ZnBr2) as coinitiators and hydrochloric acid, tert‐butyl chloride or trichloroacetic acid as initiators. These initiating systems allow to synthesize fully soluble low molecular weight (Mn = 1000–3000 g mol?1) poly(1,3‐pentadiene)s with relatively narrow molecular weight distribution (Mw/Mn < 2.0), which do not contain any high molecular weight and insoluble fractions in the whole range of monomer conversion. The polymers synthesized in the presence of zinc halides possess the same microstructure that those prepared with TiCl4 as coinitiator. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

7.
The effect of solvent proton affinity on the kinetics of the Michael addition polymerizations of N,N′‐bismaleimide‐4,4′‐diphenylmethane (BMI) and barbituric acid (BTA) in different solvents [N‐methyl‐2‐pyrrolidone (NMP), N,N′‐dimethylacetamide (DMAC), and N,N′‐dimethylformamide (DMF)] were investigated. This was achieved by the complete suppression of the competitive free radical polymerization via the addition of a sufficient amount of hydroquinone (HQ). A mechanistic model was developed to adequately predict the polymerization kinetics before a critical conversion, at which point the diffusion‐controlled polymerization become the predominant factor during the latter stage of polymerization, was achieved. The activation energy (Ea) of the Michael addition polymerization of BMI with BTA in the presence of HQ in increasing order was: NMP < DMAC < DMF, which was correlated quite well with the solvent proton affinity (NMP > DMAC > DMF). By contrast, the frequency factor (A) in increasing order is: NMP < DMAC < DMF. As a result of the compensation effect between Ea and A, at constant temperature, the Michael addition rate constant decreased with increasing solvent proton affinity. POLYM. ENG. SCI., 54:559–568, 2014. © 2013 Society of Plastics Engineers  相似文献   

8.
The paper describes the synthesis of block copolymers of methyl methacrylate (MMA) and N‐aryl itaconimides using atom‐transfer radical polymerization (ATRP) via a poly(methyl methacrylate)–Cl/CuBr/bipyridine initiating system or a reverse ATRP AIBN/FeCl3·6H2O/PPh3 initiating system. Poly(methyl methacrylate) (PMMA) macroinitiator, ie with a chlorine chain‐end (PMMA‐Cl), having a predetermined molecular weight (Mn = 1.27 × 104 g mol?1) and narrow polydispersity index (PDI = 1.29) was prepared using AIBN/FeCl3·6H2O/PPh3, which was then used to polymerize N‐aryl itaconimides. Increase in molecular weight with little effect on polydispersity was observed on polymerization of N‐aryl itaconimides using the PMMA‐Cl/CuBr/Bpy initiating system. Only oligomeric blocks of N‐aryl itaconimides could be incorporated in the PMMA backbone. High molecular weight copolymer with a narrow PDI (1.43) could be prepared using tosyl chloride (TsCl) as an initiator and CuBr/bipyridine as catalyst when a mixture of MMA and N‐(p‐chlorophenyl) itaconimide in the molar ratio of 0.83:0.17 was used. Thermal characterization was performed using differential scanning calorimetry (DSC) and dynamic thermogravimetry. DSC traces of the block copolymers showed two shifts in base‐line in some of the block copolymers; the first transition corresponds to the glass transition temperature of PMMA and second transition corresponds to the glass transition temperature of poly(N‐aryl itaconimides). A copolymer obtained by taking a mixture of monomers ie MMA:N‐(p‐chlorophenyl) itaconimide in the molar ratio of 0.83:0.17 showed a single glass transition temperature. Copyright © 2005 Society of Chemical Industry  相似文献   

9.
Me2Si(C5Me4)(NtBu)TiCl2, (nBuCp)2ZrCl2, and Me2Si(C5Me4)(NtBu)TiCl2/(nBuCp)2ZrCl2 catalyst systems were successfully immobilized on silica and applied to ethylene/hexene copolymerization. In the presence of 20 mL of hexene and 25 mg of butyloctyl magnesium in 400 mL of isobutane at 40 bar of ethylene, Me2Si(C5Me4)(NtBu)TiCl2 immobilized catalyst afforded poly(ethylene‐co‐hexene) with high molecular weight ([η] = 12.41) and high comonomer content (%C6 = 2.8%), while (nBuCp)2ZrCl2‐immobilized catalyst afforded polymers with relatively low molecular weight ([η] = 2.58) with low comonomer content (%C6 = 0.9%). Immobilized Me2Si(C5Me4)(NtBu)TiCl2/(nBuCp)2ZrCl2 hybrid catalyst exhibited high and stable polymerization activity with time, affording polymers with pseudo‐bimodal molecular weight distribution and clear inverse comonomer distribution (low comonomer content for low molecular weight polymer fraction and vice versa). The polymerization characteristics and rate profiles suggest that individual catalysts in the hybrid catalyst system are independent of each other. POLYM. ENG. SCI., 47:131–139, 2007. © 2007 Society of Plastics Engineers  相似文献   

10.
Copolymerization of methyl acrylate (MA) with 1‐octene (1‐Oct) was conducted in the presence of free radical initiator, 2,2′‐azobis(2‐methylpropionitrile) (AIBN) using heterogeneous Lewis acid, acidic alumina. The polymers obtained were transparent and highly viscous liquids. The copolymer composition calculated from 1H NMR showed alkene incorporation in the range of 10–61%. The monomodal nature of chromatographic curves corresponding to the molecular weight distribution in gel permeation chromatography (GPC) further confirmed that the polymers obtained are true copolymers. The number–average molecular weights (Mn) of the copolymers were in the range of 1.1 × 104–1.6 × 104 with polydispersity index of 1.75–2.29. The effects of varying the acidic alumina amount, time of polymerization, and monomer infeed on the incorporation of 1‐Oct in the polymer chain were studied. Increased 1‐Oct infeed led to its higher inclusion in the copolymer chain as elucidated by NMR. DEPT‐135 NMR spectral analysis was used to explicate the nature of arrangement of monomer sequences in the copolymer chain. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

11.
A series of new alternating aromatic poly(ester‐imide)s were prepared by the polycondensation of the preformed imide ring‐containing diacids, 2,2′‐bis(4‐trimellitimidophenoxy)biphenyl (2a) and 2,2′‐bis(4‐trimellitimidophenoxy)‐1,1′‐binaphthyl (2b) with various aromatic dihydroxy compounds in the presence of pyridine and lithium chloride. A model compound (3) was also prepared by the reaction of 2b with phenol, its synthesis permitting an optimization of polymerization conditions. Poly(ester‐imides) were fully characterized by FTIR, UV‐vis and NMR spectroscopy. Both biphenylene‐ and binaphthylene‐based poly(ester‐imide)s exhibited excellent solubility in common organic solvents such as tetrahydrofuran, m‐cresol, pyridine and dichloromethane. However, binaphthylene‐based poly(ester‐imide)s were more soluble than those of biphenylene‐based polymers in highly polar organic solvents, including N‐methyl‐2‐pyrrolidone, N,N‐dimethylacetamide, N,N‐dimethylformamide and dimethyl sulfoxide. From differential scanning calorimetry thermograms, the polymers showed glass‐transition temperatures between 261 and 315 °C. Thermal behaviour of the polymers obtained was characterized by thermogravimetric analysis, and the 10 % weight loss temperatures of the poly(ester‐imide)s was in the range 449–491 °C in nitrogen. Furthermore, crystallinity of the polymers was estimated by means of wide‐angle X‐ray diffraction. The resultant poly(ester‐imide)s exhibited nearly an amorphous nature, except poly(ester‐imide)s derived from hydroquinone and 4,4′‐dihydroxybiphenyl. In general, polymers containing binaphthyl units showed higher thermal stability but lower crystallinity than polymers containing biphenyl units. Copyright © 2005 Society of Chemical Industry  相似文献   

12.
The graft polymerization of methyl methacrylate and butyl acrylate onto poly(vinyl chloride‐co‐vinyl acetate) with atom transfer radical polymerization (ATRP) was successfully carried out with copper(I) thiocyanate/N,N,N,N,N″‐pentamethyldiethylenetriamine and copper(I) chloride/2,2′‐bipyridine as catalysts in the solvent N,N‐dimethylformamide. For methyl methacrylate, a kinetic plot of ln([M]0/[M]) (where [M]0 is the initial monomer concentration and [M] is the monomer concentration) versus time for the graft polymerization was almost linear, and the molecular weight of the graft copolymer increased with increasing conversion, this being typical for ATRP. The formation of the graft polymer was confirmed with gel permeation chromatography, 1H‐NMR, and Fourier transform infrared spectroscopy. The glass‐transition temperature of the copolymer increased with the concentration of methyl methacrylate. The graft copolymer was hydrolyzed, and its swelling capacity was measured. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 183–189, 2005  相似文献   

13.
cis‐9,10‐dihydro‐9,10‐ethanoanthracene‐11,12‐dicarboxylic acid anhydride ( 1 ) was converted to imide acid ( 2 ) by reaction with S‐valine. Compound 2 was converted to the acid chloride ( 3 ) by reaction with thionyl chloride and then treated with 5‐aminoisophthalic acid in dry N,N‐dimethylacetamide to obtain 5‐[(9,10‐dihydro‐9,10‐ethanoanthracene‐11,12‐dicarboximido)‐3‐methylbutanoylamino]isophthalic acid ( 4 ). Direct step‐growth polymerization of this novel chiral diacid monomer 4 with a series of different diols in a system of tosyl chloride, pyridine, and N,N‐dimethylformamide was carried out. The optically active polyesters (PEs) were obtained with good yield and moderate inherent viscosity ranging from 0.23 to 0.48 dL/g. The resulting polymers were characterized with FTIR, 1H‐NMR, and elemental analysis techniques. The prepared PEs showed good thermal stability up to 320°C as measured by thermogravimetric analysis. Specific rotation experiments demonstrated the induction of optical activity due to successful insertion of S‐valine in the structure of pendant groups. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

14.
Three‐component systems, which contain a light‐absorbing species (dye), an electron donor (n‐butyltriphenylborate salt), and a third component (N‐alkoxypyridinum salt or 1,3,5‐triazine derivative), have emerged as efficient, visible‐light sensitive photoinitiators of free radical polymerization. It was found that three‐component systems are more efficient than their two‐component counterparts. Kinetic studies based on microcalorimetry revealed a significant increase in polymerization rate with increasing concentration of N‐alkoxypyridinum salt. Such results were not obtained for photoinitiating systems possessing 1,3,5‐triazine derivative as a second coinitiator. Based on the experimental results we concluded that the primary photochemical reaction involves electron transfer from the borate anion to the excited dye followed by the reaction of resulting dye‐based radical with second coinitiator that regenerates the original dye and simultaneously produces the alkoxy radical or triazynyl radical which could start the polymerization chain reaction. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

15.
Pyromellitic dianhydride (benzene‐1,2,4,5‐tetracarboxylic dianhydride) (1) was reacted with several amino acids in acetic acid and the resulting imide‐acid [N,N′‐(pyromellitoyl)‐bis‐L ‐amino acid diacid] (4a–4d) was obtained in high yield. The direct polycondensation reaction of these diacids with 4,4′‐thiobis(2‐tert‐butyl‐5‐methylphenol) (5) was carried out in a system of tosyl chloride(TsCl), pyridine, and N,N‐dimethyl formamide (DMF) to give a series of novel optically active poly(esterimide)s. Step‐growth polymerization was carried out by varying the time of heating and the molar ratio of TsCl/diacid, and the optimum conditions were achieved. These new chiral polymers were characterized with respect to chemical structure and purity by means of specific rotation experiments, FTIR, 1H‐NMR, X‐ray diffraction, elemental, and thermogravimetric analysis (TGA) field emission scanning electron microscopy (FE‐SEM) techniques. These polymers are readily soluble in many polar organic solvents like DMF, N,N‐dimethyl acetamide, dimethyl sulfoxide, N‐methyl‐2‐pyrrolidone, and protic solvents such as sulfuric acid. TGA showed that the 10% weight loss temperature in a nitrogen atmosphere was more than 390°C; therefore, these new chiral polymers have useful levels of thermal stability associated with good solubility. Furthermore, study of the surface morphology of the obtained polymers by FE‐SEM showed that each polymers exhibit nanostructure morphology. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

16.
A pyromellitic dianhydride (benzene‐1,2,4,5‐tetracarboxylic dianhydride) was reacted with L ‐isoleucine in acetic acid, and the resulting imide acid [N,N′‐(pyromellitoyl)‐bis‐L ‐isoleucine] (4) was obtained in a high yield. 4 was converted into N,N′‐(pyromellitoyl)‐bis‐L ‐isoleucine diacid chloride by a reaction with thionyl chloride. The polycondensation reaction of this diacid chloride with several aromatic diamines, including 1,4‐phenylenediamine, 4,4′‐diaminodiphenyl methane, 4,4′‐diaminodiphenylsulfone (4,4′‐sulfonyldianiline), 4,4′‐diaminodiphenylether, 2,4‐diaminotoluene, and 1,3‐phenylenediamine, was developed with two methods. The first method was polymerization under microwave irradiation, and the second method was low‐temperature solution polymerization, with trimethylsilyl chloride used as an activating agent for the diamines. The polymerization reactions proceeded quickly and produced a series of optically active poly(amide imide)s with good yields and moderate inherent viscosities of 0.17–0.25 dL/g. All of the aforementioned polymers were fully characterized by IR, elemental analyses, and specific rotation. Some structural characterization and physical properties of these optically active poly(amide imide)s are reported. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 951–959, 2004  相似文献   

17.
Well defined block‐graft copolymers of cyclohexanone‐formaldehyde resin (CFR) and methylmethacrylate (MMA) were prepared via atom transfer radical polymerization (ATRP). In the first step, cyclohexanone formaldehyde resin (CFR) containing hydroxyl groups were modified with 2‐bromopropionyl bromide. Resulting multifunctional macroinitiator was used in the ATRP of MMA using copper bromide (CuBr) and N,N,N′,N″,N″‐pentamethyl‐diethylenetriamine (PMDETA) as catalyst system at 90°C. The chemical composition and structure of the copolymers were characterized by nuclear magnetic resonance (1H‐NMR) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and molecular weight measurement. Molecular weight distributions of the CFR graft copolymers were measured by gel permeation chromatography (GPC). Mn values up to 19,000 associated with narrow molecular weight distributions (polydispersity index (PDI) < 1.6) were obtained with conversions up to 49%. Coating properties of synthesized graft copolymers such as adhesion and gloss values were measured. They exhibited good adhesion properties on Plexiglas substrate. The thermal behaviors of all polymers were conducted using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

18.
With Lewis Acids as catalysts in melt system, the influence of kinds of Lewis Acids, dosages of catalysts on the behaviors of crosslinking and grafting of ethylene–propylene–diene rubber (EPDM) were investigated. The Lewis Acids, such as anhydrous AlCl3, FeCl3, SnCl4, could initiate the crosslinking of EPDM and the grafting between EPDM and polystyrene (PS). The carbon–carbon double bonds existing on EPDM chain were favorable to the formation of the initial carbocation in the presence of Lewis Acids. The carbocation initiated carbonium ion polymerization between the unsaturated bonds, or substituted for a proton from the phenyl in the presence of PS forming EPDM‐g‐PS copolymer. Anhydrous aluminum chloride was found to be an efficient catalyst and its initiating temperatures for crosslinking or grafting were about 110°C. The amounts of gel and the data of torques showed that there was a competition between the crosslinking‐grafting reaction and the degradation of blending components in the presence of AlCl3. The EPDM‐g‐PS copolymer served as a compatibilizer in the EPDM/PS blends and enhanced the mechanical properties. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

19.
Three isomeric 5‐norbornene‐2,3‐dicarboxylic acid diethyl ester (NDDE) with endo‐, exo‐, and trans‐configuration have been synthesized and employed as internal electron donors (IED) in 1‐butene polymerization over magnesium chloride supported Ziegler–Natta catalysts. It was found that the configuration of NDDE plays a key role in tuning the catalyst activity, stereospecificity, molecular weight (MW), and polydispersity index (PDI) of resulting poly(1‐butene). The type of catalyst with cis‐5‐norbornene‐endo‐2,3‐dicarboxylic acid diethyl ester as IED shows the highest catalyst activity, while catalyst with trans‐NDDE as IED yields the poly(1‐butene) with the highest MW and the most broad PDI. IR results showed that the NDDE with endo‐, exo‐, and trans‐configuration have different coordination way to MgCl2, subsequently affecting the catalysts performance. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40758.  相似文献   

20.
The polymerization of glycidyl phenyl ether (GPE) was examined with O,O‐di‐t‐butyl phenylphosphonate (BP) as an initiator in the presence of several Lewis acids, ammonium salts, and methyl cyanoacetate. BP served as an excellent thermally latent initiator in the polymerization of GPE in the presence of ZnCl2 and Zn(acac)2. Epikote 828 was cured with BP (5 mol %) in the presence of ZnCl2 at 150°C to afford the solvent‐insoluble gelled epoxy resin quantitatively, which was thermally more stable than was the one cured without ZnCl2. No curing took place at room temperature for 7 months. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 2347–2351, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号