首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
通过合金成分设计,轧制、热处理工艺的探索,开发了低合金高强度海洋软管用钢,其屈服强度大于600 MPa且满足抗氢脆、抗氢致开裂、抗应力腐蚀开裂性能,并通过全浸腐蚀实验对该钢的海水腐蚀行为进行了研究。结果表明,采用低C、低Mn并复合添加耐蚀元素Cr、Mo和采用合理的热轧、冷轧、调质处理工艺,可获得满足抗应力腐蚀开裂性能的600 MPa级高强钢。耐蚀元素的添加使实验钢具有良好的耐海水腐蚀能力,腐蚀稳定状态下的平均年腐蚀速率为0.11 mm/a。  相似文献   

3.
4.
赵彦华  赵志强  赵海峰 《连铸》2007,(2):27-28,31
通过对邯钢第三炼钢厂板坯连铸机钢包回转台上高强度螺栓制造工艺的分析,表明螺栓的性能级别达到了10.9级以上.预紧安装及使用效果证明该批螺栓满足了板坯连铸机设备安装及生产的需要.  相似文献   

5.
The stress corrosion cracking behaviour of 7075 (Al–Zn–Mg–Cu) alloy have been studied in a salt spray fog chamber with two vapourised aqueous solutions (0 and 5% NaCl). The paper analyses the stress corrosion resistance of 7075 aluminium alloy with several precipitation‐ageing heat treatments. The results are compared with that obtained in 3.5% NaCl aqueous solution at 20 °C. The salt spray fog testing has permitted a good evaluation of SCC susceptibility in 7075 alloy. All temper conditions studied were susceptible to SCC in the different environments tested. 7075‐T6 temper was the most susceptible, while in all the cases studied 7075‐T73 temper was the least susceptible. Compared to 7075‐T6, 7075‐RRA temper improved the resistance against the SCC process, but the mechanical properties obtained were lower.  相似文献   

6.
There are many commercially available titanium alloys that have exhibited the capability of achieving high strength. Many of these alloys have not been seriously considered for fastener applications due to their cost or availability as coil or bar product. However, because new designs, increased material requirements, and larger aircraft are being built, the need to reduce weight and improve performance continues to be a major issue. The possibility of reducing weight by replacing currently used steel or Ni-based fasteners in various sizes is a great incentive. Over the past few years, many of these titanium alloys have been processed to bar and coil products to evaluate their capabilities as potential fastener materials. This article will review and summarize the mechanical properties, tensile, shear, notch tensile, and available fatigue, as well as the microstructure of these candidate alloys. This paper was presented at the Beta Titanium Alloys of the 00’s Symposium sponsored by the Titanium Committee of TMS, held during the 2005 TMS Annual Meeting & Exhibition, February 13–16, 2005 in San Francisco, CA.  相似文献   

7.
8.
The aim of the present work was to determine the influence of the retrogression and reaging (RRA) heat treatment on the correlation between microstructure, mechanical properties and susceptibility to stress corrosion cracking (SCC) of the AlZn5Mg1 alloy in dry air and sea water. The alloy received in the T6 temper was subjected to 9 different heat treatments, including retrogression at temperature 453–513 K for 600–3600 s, and reaging at temperature 363 K or 403 K for 16 h, 24 h or 48 h. The susceptibility to SCC was investigated by slow strain rate tensile tests at 10?6 s?1 strain rate; change in time to failure, fracture energy and reduction in area were taken into account. Generally, the heat treatment improving mechanical properties increased susceptibility to SCC. The observed effects were discussed in terms of change in microstructure, especially size and distribution of phase precipitates. The role of change in dislocation network was the most likely of no importance.  相似文献   

9.
The stress corrosion cracking behaviour of plate material of the aluminium alloys 2024‐T351, 8090‐T8171, 7475‐T651, and 7075‐T7351 was investigated performing constant load tests. Short transverse tensile specimens were permanently immersed in aerated aqueous 0.6 M Na2Cl solutions with additions of Na2SO4, NaNO3, NaHCO3, NH4HCO3, Na2HPO4, Na2SO3 or Na2CO3. The concentration of the added salts was 0.06 M. The applied stress was 100 MPa, except with 7075‐T7351 specimens, which were loaded at 300 MPa. Environment induced failure was not observed in neutral 0.6 M NaCl solution. The various salts added promoted intergranular stress corrosion cracking with the alloys 2024‐T351, 8090‐T8171, and 7475‐T651. Threshold stresses were generally below 100 MPa. For 8090‐T8171 exposed to chloride containing electrolytes with additions of sulfate, hydrogen phosphate, or sulfite, threshold stresses were approximately 100 MPa or higher. Similar results were obtained for 7475‐T651 plate when immersed in chloride‐hydrogen phosphate and chloride‐carbonate solutions. Alloy 7075‐T7351 was resistant against intergranular stress corrosion cracking. Specimens suffered pitting corrosion during immersion in the corrosive environments. Failure observed with 7075‐T7351, in particular when exposed to the chloride‐nitrate solution, was associated with reduction of cross‐sectional area due to pitting and transgranular stress corrosion cracking.  相似文献   

10.
Buraś  J.  Szucki  M.  Piwowarski  G.  Krajewski  W. K.  Krajewski  P. K. 《中国铸造》2017,14(3):211-215
This paper includes studies on the influence of grain refinement treatment with respect to the composition and structure of high zinc aluminium casting alloys on the changes of their tensile properties. The Al-20 wt.%Zn alloy was inoculated with master alloys Al Ti5B1 and Al Ti3C0.15 to determine the impact of a variable titanium addition on the tensile properties of Al Zn20 alloy, and determine on this basis an optimal addition of Ti that would ensure the improvement of elongation of alloys cast in the sand mould, at the same time maintaining high tensile strength. Within the studies, light microscopy(LM) and strength tests were applied. Experimental results showed that the inoculation of high zinc aluminium alloy Al Zn20 with the master alloys Al Ti5B1 and Al Ti3C0.15 causes intensive structure refinement, while the intensity of reaction of both master alloys is comparable. The Al Ti3C0.15 master alloy addition, selected for further studies, introducing about 100 ppm Ti, enhances the tensile properties of the alloy; the elongation increases about 20% and tensile strength increases about 10% against the initial values(uninoculated alloy). Further increase of the Ti addition up to 500–600 ppm leads to the "overinoculation" effect that is accompanied by the decrease of elongation. Therefore,the Ti addition should be reduced to the level of about 100 ppm which ensures obtaining a set of optimal properties.  相似文献   

11.
The article presents the test results of stress corrosion resistance of explosion welded steel‐aluminum elements. The tests were carried out by means of the slow strain rate test (10?6 s?1) in air and artificial sea water. The following parameters were measured: tensile strength, time‐to‐failure and destructive energy. The tested explosion welded joints show susceptibility to degradation of properties in the corrosive environment. Galvanic corrosion is the main reason of degradation of the measured values. Another mechanism of explosion welded joints' destruction was found in air and artificial sea water. The tests of the explosion welded elements in the fast flow of sea water showed substantial galvanic corrosion.  相似文献   

12.
13.
14.
Mixed rare earth organophosphates have been investigated as potential corrosion inhibitors for AA2024‐T3 with the aim of replacing chromate‐based technologies. Cerium diphenyl phosphate (Ce(dpp)3) and mischmetal diphenyl phosphate (Mm(dpp)3) were added to epoxy coatings applied to AA2024‐T3 panels and they were effective in reducing the amount and rate of filiform corrosion in high humidity conditions. Ce(dpp)3 was the most effective and characterisation of the coating formulations showed approximately a factor of 5 reduction in both the number of corrosion filaments initiated as well as the length of these. Mm(dpp)3 appeared to reduce the corrosion growth rate by a factor of 2 although it was the more effective inhibitor in solution studies. Spectroscopic characterisation of the coatings indicated that the cerium based inhibitor may disrupt network formation in the epoxy thus resulting in a coating that absorbed more water and allowed greater solubilisation of the corrosion inhibiting compound.  相似文献   

15.
16.
高强铝合金VPPA-MIG复合焊接焊缝成形机理   总被引:1,自引:1,他引:0       下载免费PDF全文
童嘉晖  韩永全  洪海涛  孙振邦 《焊接学报》2018,39(5):69-72,91
VPPA-MIG复合焊集VPPA穿透力强和MIG焊熔敷效率高的优点,弥补了单VPPA焊工艺区间窄且需立焊和MIG焊熔深浅的不足. 使用Red Lake Y4高速摄像获取6 mm厚2A12铝合金VPPA-MIG复合焊接熔池图像,建立了熔池受力模型. 对比分析了复合热源不同能量配比对焊缝成形和熔池形貌的影响及VPPA-MIG与单MIG焊缝成形特点. 结果表明,VPPA-MIG复合热源相比单VPPA热源易保持焊缝成形稳定性. VPPA电流接近穿孔阈值时,配合较低功率MIG热源可以获得6 mm厚2A12铝合金良好焊缝成形;VPPA能量比例过低时,小孔较浅,熔化效率较低,不能起到增加熔深的作用;VPPA能量比例过大,易使熔池失稳,焊缝成形不良. 热源输入功率相同时,VPPA-MIG复合焊比MIG焊显著增加焊缝熔深和深宽比,提高生产效率.  相似文献   

17.
铝合金作为一种新型节能材料,被广泛应用在航空航天、汽车工业等领域,其特点是低密度、高比强度、导热导电性能优异、抗腐蚀性强等.阐明了铝合金电阻点焊存在的难点,并进行了相关的原理性解释,归纳总结了国内外关于铝合金电阻点焊的相关研究现状,探讨未来铝合金的电阻点焊研究方向与研究重点,并列举了铝合金的电阻点焊在汽车工业与其他产业中的应用.  相似文献   

18.
A novel apparatus for solidification research has been developed which utilises a modified tensile testing machine and customised mould to control thermal and mechanical parameters during solidification. The test provides constraint during solidification and generates information about strength development, strain accommodation and hot cracking behaviour of the mushy zone material. The equipment has been used to determine the effect of grain refinement and composition variations on these parameters. This paper describes the test apparatus and the type of information it generates. It includes a comparison of hot cracking produced in the rig with that obtained from direct chill cast product. The development of strength of a relatively pure material, alloy AA194, and a highly alloyed, extended freezing range alloy, AA7075 is presented. In the case of alloy AA7075 strength development began at a solid fraction of approximately 0.7 and continued to increase as solidification progressed. The development of strength in alloy AA194 did not occur until a fraction solid of 0.9. Under tensile loading conditions, the development of strength appears to occur at higher solid fractions than for rheological test methods.  相似文献   

19.
20.
用改进的WOL型试样研究了Cr-Mo-V系高强度钢在3.5%NaCl水溶液中的应力腐蚀断裂行为,并与常用的42CrMo钢进行了对比。结果表明,回火温度对实验钢的应力腐蚀开裂行为有显著影响。当回火温度较低时,Cr-Mo-V钢的KISCC较低,且随回火温度的升高缓慢提高,断裂方式主要为沿晶断裂;当回火温度超过约873K后,KISCC显著提高,断口中穿晶断裂所占的比例明显增加,断裂方式逐渐转变为穿晶型断裂为主。在相同的强度水平下,Cr-Mo-V钢的KISCC高于42CrMo钢,且在低强度水平下二者差别较大。对42CrMo钢,KISCC随屈服强度升高呈指数下降。但对Cr-Mo—v钢,则并非如此,即在强度保持不变(Rp0.2=1410—1440MPa)的条件下,KISCC随回火温度升高而明显提高。Cr-Mo—V钢和42CrMo钢的KISCC均随回火温度的升高呈指数关系增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号