首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
焙烧氟碳铈矿硫酸浸出稀土的动力学(英文)   总被引:2,自引:0,他引:2  
研究了硫酸浸出德昌稀土与天青石共伴生矿的焙烧矿过程。考查粒度、搅拌速度、硫酸浓度和温度对稀土浸出率的影响,并对稀土的浸出动力学进行分析。在选定的浸出条件下:粒径0.074~0.100mm、硫酸浓度1.5mol/L、液固比8:1、搅拌速度500r/min,稀土浸出反应受内扩散控制,表观活化能为9.977kJ/mol。  相似文献   

2.
为了提高湿法浸出低钒钢渣中钒的浸出率,并为湿法浸出低钒钢渣中钒提供理论依据,从动力学角度分析整个浸出过程,并考察温度、液/固比、浸出时间和搅拌速度对浸出过程的影响。结果表明,在90℃,液/固比为10:1以及4.0mol/L盐酸,过氧化氢8.0mL,浸取90min条件下,低钒钢渣中钒的浸出率可达到98.8%。通过正交实验和动力学推导,得到描述浸出过程的经验方程。低钒钢渣湿法浸出钒的动力学模型为未反应收缩核模型,浸出过程的表观活化能为7.21kJ/mol。该模型表明浸出过程中的控制步骤取决于边界层的扩散速度。提高温度、液/固比和浸出时间,均可增加钒的浸出速度,提高钒的浸出率。  相似文献   

3.
A novel process was proposed for the activation pretreatment of limonitic laterite ores by Na2CO3 roasting. Dechromization and dealumination kinetics of the laterite ores and the effect of particle size, Na2CO3-ore mass ratio, and roasting temperature on Cr and Al extraction were studied. Experimental results indicate that the extraction rates of Cr and Al are up to 99% and 82%, respectively, under the optimal particle size of 44–74 μm, Na2CO3-to-ore mass ratio of 0.6:1, and temperature of 1000 °C. Dechromization within the range of 600–800 °C is controlled by the diffusion through the product layer with an apparent activation energy of 3.9 kJ/mol, and that it is controlled by the chemical reaction at the surface within the range of 900–1100 °C with an apparent activation energy of 54.3 kJ/mol. Besides, the Avrami diffusion controlled model with on apparent activation energy of 16.4 kJ/mol is most applicable for dealumination. Furthermore, 96.8% Ni and 95.6% Co could be extracted from the alkali-roasting residues in the subsequent pressure acid leaching process.  相似文献   

4.
研究Tunceli孔雀石矿物在硝酸溶液中的溶出行为,以评估各种实验参数的影响.研究为分两个阶段.在第一步中,确定浸出过程的最佳条件,而在第二步中,对该过程进行动力学评估.在优化实验中,以硝酸浓度、温度、搅拌速度和固液比为自变量,采用中心组合设计法(CCD)获得实验数据.确定硝酸浓度、温度、固液比和搅拌速度的最佳值分别为...  相似文献   

5.
In order to relieve the equipment corrosion, reduce chlorine and increase phosphorus contents in leaching solution, the leaching behavior of potassium from phosphorus–potassium associated ore in the mixed acids of hydrochloric acid and phosphoric acid was investigated. The effects of various factors, such as mass fraction of hydrochloric acid, solid-to-liquid ratio, material ratio (CaF2 dosage (g)/mass of ore (g)) and leaching temperature were comprehensively studied. It was found that the dissolution fraction of potassium can reach more than 86% under the optimum conditions of leaching temperature 95 °C, HCl concentration 10%, leaching time 6 h, solid/liquid ratio 1:5, and material ratio 0.1. In addition, the leaching kinetics of potassium was successfully modeled by a semi-empirical kinetic model based on the classic shrinking core model. The data showed that the leaching process of potassium was controlled by the product layer diffusion and the apparent activation energy for the process was found to be 54.67 kJ/mol over the temperature range from 65 to 95 °C.  相似文献   

6.
CuO was used as a catalyst in the concentrated KOH solution to enhance the leaching of chromium from the chromite ore. The impacts of temperature, KOH-to-chromite ore mass ratio, CuO-to-chromite ore mass ratio, and gas flow rate on the chromium leaching rate were investigated. The results indicated that CuO played an important role in improving the chromium leaching rate. The leaching rate reached 98% after leaching for 6 h when CuO was applied, whereas it was only 60.8% without CuO under the same reaction conditions: temperature 230 °C, KOH-to-ore mass ratio 6:1, stirring speed 700 r/min, gas flow rate 1 L/min. According to the kinetics study, the catalytic oxidation was controlled by surface chemical reaction and the activation energy was calculated to be 15.79 kJ/mol when the temperature was above 230 °C. In contrast, without CuO, the rate-determining step was external diffusion and the apparent activation energy was 38.01 kJ/mol.  相似文献   

7.
Low concentration alkaline leaching was used for predesilication treatment of low-grade pyrolusite. The effects of initial NaOH concentration, liquid-to-solid ratio, leaching temperature, leaching time and stirring speed on silica leaching rate were investigated and the kinetics of alkaline leaching process was studied. The results show that silica leaching rate reached 91.2% under the conditions of initial NaOH concentration of 20%, liquid-to-solid ratio of 4:1, leaching temperature of 180 °C, leaching time of 4 h and stirring speed of 300 r/min. Shrinking-core model showed that the leaching process was controlled by the chemical surface reaction with activation energy Ea of 53.31 kJ/mol. The fluidized roasting conditions for preparation of sodium manganate were optimized by the orthogonal experiments using the desiliconized residue. The conversion rate of sodium manganate was obtained to be 89.7% under the conditions of silica leaching rate of 91.2%, NaOH/MnO2 mass ratio of 3:1, roasting temperature of 500 °C and roasting time of 4 h, and it increased with the increase of silicon leaching rate.  相似文献   

8.
The feasibility and kinetics of lead recovery from the slag of traditional lead melting furnace using chloride leaching were investigated. The effects of operating parameters such as leaching time, NaCl concentration, FeCl3 concentration, liquid/solid ratio, stirring rate, temperature, and particle size on recovery of lead were studied and the optimization was done through the response surface methodology (RSM) based on central composite design (CCD) model. The optimum conditions were achieved as follows: leaching time 60 min, 80 °C, stirring rate 800 r/min, NaCl concentration 200 g/L, FeCl3 concentration 80 g/L, liquid/solid ratio 16, and particle size less than 106 μm. More than 96% of lead was effectively recovered in optimum condition. Based on analysis of variance, the reaction temperature, liquid/solid ratio, and NaCl concentration were determined as the most effective parameters on leaching process, respectively. Kinetics study revealed that chloride leaching of galena is a first-order reaction and the diffusion through solid reaction product and chemical reaction control the mechanism. The activation energy of chloride leaching of galena was determined using Arrhenius model as 27.9 kJ/mol.  相似文献   

9.
通过差热?热重实验和非等温分析法研究辉钼精矿的氧化焙烧动力学.结果表明:高温焙烧有利于辉钼矿的氧化,其初始氧化温度为450℃,500℃以上时迅速氧化.氧化过程符合未反应收缩核模型.氧化初期受化学反应控制,其表观活化能为123.180 kJ/mol;后期受内扩散控制,表观活化能为80.175 kJ/mol.整个氧化过程中...  相似文献   

10.
Cuprite is a difficult oxide to leach under acidic conditions (for the maximum extraction of 50%). In this research, the feasibility of leaching cuprite in an ammoniacal medium was studied. The working conditions addressed here were the liquid/solid ratio (120:1–400:1 mL/g), stirring speed (0–950 r/min), temperature (10–45 °C) and NH4OH concentration (0.05–0.15 mol/L). In addition, different ammoniacal reagents (NH4F and (NH4)2SO4) were analyzed. The experiments were performed in a 2 L reactor with a heating mantle and a condenser. The most important results were that the maximum leaching rate was obtained at pH 10.5, 0.10 mol/L NH4OH, 45 °C, 4 h, 850 r/min and a liquid/solid ratio of 400:1, reaching a copper extraction rate of 82%. This result was related to the non-precipitation of copper in solution by the formation of copper tetra-amine. The liquid/solid ratio and stirring speed were essential for increasing the cuprite leaching. The maximum leaching rate was achieved at higher temperatures; however, significant copper leaching rate occurred at temperatures near the freezing point of water (17.9% over 4 h). Increasing NH4OH concentration and decreasing particle size increased the cuprite leaching rate. The two ammoniacal reagents (NH4F and (NH4)2SO4) had low extraction rate of copper compared with NH4OH. The kinetic model representing cuprite leaching was a chemical reaction on the surface. The order of the reaction with respect to the NH4OH concentration was 1.8, and it was inversely proportional to the radius of the ore particles. The calculated activation energy was 44.36 kJ/mol in the temperature range of 10–45 °C.  相似文献   

11.
A novel process was developed for the decomposition of vanadium slag using KOH sub-molten salt under ambient pressure, and the effects of reaction temperature, alkali-to-ore mass ratios, particle size, and stirring speed on vanadium and chromium extraction were studied. The results suggest that the reaction temperature and KOH-to-ore mass ratio are more influential factors for the extraction of vanadium and chromium. Under the optimal reaction conditions (temperature 180 °C, initial KOH-to-ore mass ratio 4:1, stirring speed 700 r/min, gas flow 1 L/min, and reaction time 300 min), vanadium and chromium extraction rates can reach up to 95% and 90%, respectively. Kinetics analysis results show that the decomposing process of vanadium slag in KOH sub-molten salt can be well interpreted by the shrinking core model under internal diffusion control. The apparent activation energies for vanadium and chromium are 40.54 and 50.27 kJ/mol, respectively.  相似文献   

12.
研究了元素硫水热硫化合成异极矿的动力学研究,考察了搅拌转速(100~600r/min)、温度(120~220℃)、硫磺用量(摩尔比为0.6~1.6)和矿物粒度(48~246μm)对异极矿转化率的影响。结果表明:随着转化温度的升高和矿物粒度的减小,异极矿的转化率不断增大。当搅拌转速大于400r/min,硫磺理论摩尔比大于1时,其对异极矿的转化率影响不明显。异极矿元素硫水热硫化转化反应初期受化学反应控制,该过程的表观活化能为50.23kJ/mol,后期逐步转变为受固体产物层的扩散控制,其表观活化能为11.12kJ/mol。  相似文献   

13.
氟碳铈矿盐酸浸出过程的动力学   总被引:1,自引:0,他引:1  
考察盐酸浓度、浸出温度、液固比和矿物粒度对浸出速度的影响.结果表明:在盐酸浓度6 mol/L、浸出温度90C、液固比15:1、矿物粒度25 μm的条件下浸出90 min后,氟碳铈矿中稀土碳酸盐的浸出率达到89.6%,而稀土氟化物的浸出率仪为1.5%.氟碳铈矿浸出过程符合产物层扩散模型,稀土碳酸盐和氟化物浸出过程的表观活...  相似文献   

14.
Ammonia leaching kinetics of a complex Cu-ore assaying 8.8% Cu and 36.1% Fe was examined. Mineralogical characterization indicated that the major phase of the ore was siderite with chalcopyrite as the major sulfide mineral. The effects of parameters such as agitation, temperature, NH3 concentration, particle size and oxygen partial pressure (pO2) were investigated. Under the standard leaching conditions of 125–212 µm particle size, 120 °C, 1.29 mol/L NH3 and 202 kPa of pO2, about 83% Cu could be selectively extracted in 2.5 h. However, when using higher NH3 concentration and lower particle size, more than 95% extraction was achieved. The leaching process was found to be surface reaction controlling. The estimated activation energy was (37.6±1.9) kJ/mol and empirical orders of reaction with respect to pO2 and [NH3] were about 0.2 and 1, respectively.  相似文献   

15.
提出两段氧化—碱浸—酸浸工艺来回收改性含钛高炉渣中的铁、钒和钛.较佳的提铁实验条件为一段氧化时间40 s和保温时间8 min,铁的回收率为89.93%.较佳的提钒实验条件为总氧化时间126 s、NaOH浓度4.0 mol/L、浸出温度95℃、浸出时间90 min和碱浸循环次数4,钒的浸出率为92.13%.较佳的提钛实验...  相似文献   

16.
低钒转炉钢渣提钒湿法工艺的动力学研究   总被引:1,自引:0,他引:1  
为了提高湿法浸出低钒钢渣中钒的浸出效率,并对湿法浸出低钒钢渣中钒提供理论依据,从动力学角度分析整个浸出过程。考察温度、液固比、硫酸质量分数和搅拌速率对浸出过程的影响。研究结果表明:在90℃、液固比为10?1以及硫酸浓度6.0mol/L时,浸取9h,低钒钢渣中钒的浸出率可达到95.3%。通过正交实验和动力学推导,得到描述浸出过程的经验方程,低钒钢渣湿法浸出钒的动力学模型为收缩核动力学模型,浸出过程的表观活化能为12.794kJ/mol,该模型表明浸出过程中的控制步骤取决于固膜扩散速率。提高温度、液固比和硫酸质量分数,均可加速钒的浸出速度,提高钒的浸出率。  相似文献   

17.
The leaching of low-sulfur Ni-Cu matte in acid-oxygen (CuSO4-H2SO4-O2) solution at atmospheric pressure was researched. This matte was obtained from high grade Ni-Cu matte by magnetic separation, which mainly contained Ni-Cu alloy and a small quantity of sulfides. The effects of temperature, agitation speed, oxygen flow rate, particle size, acid concentration and concentration of copper ion were studied. It is found that the matte particles are leached by shrinking core mechanism and the leaching process is electrochemically controlled. In a temperature range of 30-60 ℃, the surface reaction is rate-limiting step, with an apparent activation energy of 41.9 kJ/mol. But at higher temperature (70-85℃), the rate process is controlled by diffusion through the product layer, with an apparent activation energy of 7.3 kJ/mol.  相似文献   

18.
The aim of this work was to investigate the leaching of chalcopyrite concentrate in hydrochloric acid with hydrogen peroxide as a strong oxidizing agent. The effects of the leaching variables on metal extraction, such as stirring speed, solid-to-liquid ratio, temperature and HCl and H2O2 concentrations, were studied. The maximum final copper extraction of 33% was attained with 3.0 mol/L H2O2 in 0.5 mol/L HCl at room temperature after 180 min of the reaction. The results showed that the copper extraction was increased in the first 60 min of reaction, after which it essentially ceased due to the fast catalytic decomposition of hydrogen peroxide. Further, solid-to-liquid ratio affected the copper extraction significantly and the highest copper extraction was obtained in the most dilute suspension (i.e., S/L ratio of 1:100). The dissolution process was described by the first order kinetics equation. The apparent activation energy of 19.6 kJ/mol suggested that the dissolution process was under diffusion control. The reaction orders for HCl and H2O2 were established to be 0.30 and 0.53, respectively. The results of the XRD and SEM/EDS analysis of the leaching residue indicated the generation of the elemental sulphur on mineral surfaces which tended to inhibit the leaching rate.  相似文献   

19.
采用Na2SO3溶液从硒渣中选择性浸出Se及其动力学   总被引:1,自引:0,他引:1  
采用SO2还原沉金后液制得硒渣,再用Na2SO3选择性浸出硒渣,使Se得到有效分离;通过研究浸出过程中Se浸出率随时间的变化,建立该反应的动力学方程,确定Na2SO3溶液浓度、液固比、搅拌速度及反应温度对Se浸出率的影响,并计算相应的表观活化能。结果表明:增加Na2SO3溶液浓度和升高反应温度可以较大幅度提高Se的浸出率,液固比和搅拌速度对浸出Se的影响较小;Na2SO3浸出Se过程为Avrami模型混合控制,其特征参数n和表观活化能E分别为0.235和20.847 kJ/mol,Se的浸出率受反应温度的影响较大。  相似文献   

20.
As part of a U.S. Bureau of Mines program to develop a more continuous titanium metal process that exploits domestic resources, a study was made of the kinetics of hydrofluoric acid (HF) leaching of New York rock ilmenite. The effects of leach temperature, HF concentration, and particle size on leach rate were investigated. The data fit a shrinking core model with the rate controlled by the chemical reaction step. The rate of reaction is related to temperature by the Arrhenius relationship with the activation energy being 52.6 kJ/mol for titanium and 48.4 kJ/mol for iron. The rate is linearly dependent on the HF concentration and inversely proportional to the average starting diameter of the particle. Generalized rate expressions were developed for titanium and iron. Using 19.33M HF at 45°C, 99% of the titanium and 100% of the iron in New York rock ilmenite were leached in 40 minutes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号