首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A study on effect of chemical treatment using maleic anhydride‐grafted polypropylene (MAPP) and 3‐aminopropyltiethoxysilane (3‐APE) was investigated. The performance of the MAPP and 3‐APE were investigated by means of torque development, mechanical properties, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy morphology, and water absorption. The results revealed that the use of MAPP or 3‐APE in the composites has increased the stabilization torque, tensile strength, Young's modulus, water absorption, and thermal stability of the PP/NR composites. The incorporation of MAPP in the composites shows higher stabilization torque, tensile strength, EB, Young's modulus, and lower water uptake when compared with the use of 3‐APE in the PP/NR composites. TGA and DSC results indicated that primary and secondary peak of DTG curve, initial degradation temperature (T0), degradation temperature (Tdeg), melting temperature (Tm), heat of fusion of composites (ΔHf(com)), crystallinity of composites (XPP), and PP (XPP) increased, while total weight loss and thermal degradation rate decreased for both treated composites. The MAPP‐treated RNP‐filled PP/NR composites were found to be more thermal resistance and more crystalline than 3‐APE‐treated filled PP/NR RNP composites. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

2.
This article presents the study of the modification of the particle/matrix interface region and its effects on the structure and dynamic mechanical behavior of polypropylene (PP)/hydrotalcite nanocomposites prepared by melt extrusion. The interface modification was promoted by combinying the organophillization of the hydrotalcite particles with blending the PP with a maleic anhydride‐grafted‐PP (PP‐g‐MAH) or a maleic anhydride‐grafted‐poly(styrene‐co‐ethylenebutylene‐co‐styrene) (SEBS‐g‐MAH). Sodium dodecyl sulphate was used to promote the organophillization of the hydrotalcite particles. X‐ray diffraction (XRD) and transmission electron microscopy (TEM) showed a partially exfoliated hydrotalcite structure, with an increasing exfoliation being achieved by adding a compatibilizer and organo‐modifying the particles. Values of the Young's modulus (E), storage modulus (E′), maximum tensile strength (σmax), neck propagation strength (σneck), and elongation at break (εb) were found to depend both on the nature of the particle matrix interface as well as on the type of compatibilizer. Also, nanocomposites prepared with the organophillized particles showed lower Tg and loss factor values. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

3.
Boron nitride (BN) fibers were fabricated on a large scale through the melt‐drawn technique from low‐cost boric acid, NH3, and N2. Evolution of structure and properties of BN fibers during the fabrication process was studied by Fourier transform infrared (FT‐IR), X‐ray diffraction (XRD), scanning electron microscope (SEM), and X‐ray photoelectron spectroscopy (XPS). The mechanical properties of BN fibers were tested and analyzed. The results shown that both the mechanical properties and the crystallinity of BN fibers slightly increased with the temperature from 450 to 850°C, due to the combination of the fused‐B3N3. For BN fibers heat‐treated at 850 or 1000°C, the tensile strength (σR) and elastic modulus (E) were strongly increased because of the increase in crystallization of the BN phase. The meso‐hexagonal BN fibers with a diameter of 5.0 μm were fabricated at 1750°C, of which the tensile strength (σR) and elastic modulus (E) are 1200 MPa and 85 GPa, respectively. BN fibers with excellent mechanical properties and proper diameters were obtained by nitriding of green fibers during their conversion into ceramic.  相似文献   

4.
The influence of drawing on the limiting draw ratio upon formation of the morphological structure of fibers spun from binary polypropylene (PP) blends was studied. Fibers were spun from a fiber‐grade CR‐polymer and from the blends of a fiber‐grade CR‐polymer with a molding‐grade polymer in the composition range of 10–50 wt % added. As‐spun fibers were immediately moderately and additionally highly drawn at the temperature of 145°C. The structure and morphology of these fibers were investigated by small‐angle X‐ray scattering, wide‐angle X‐ray scattering, differential scanning calorimetry, scanning electron microscopy, density, birefringence, and sound velocity measurements. It was shown that continuously moderately drawn fibers are suitable precursors for the production of high tenacity PP fibers of very high modulus, because of so called oriented “smectic” structure present in these fibers. With drawing at elevated temperature, the initial metastable structure of low crystallinity was disrupted and a c‐axis orientation of monoclinic crystalline modification was developed. Hot drawing increased the size of crystallites and crystallinity degree, the orientation of crystalline domains, and average orientation of the macromolecular chains and resulted in extensive fibrillation and void formation. It was found that the blend composition has some influence on the structure of discontinuously highly drawn fibers. With increasing the content of the molding‐grade polymer in the blend, the size of crystalline and amorphous domains, density and crystallinity, as well as amorphous orientation decreased. Relationship has been established between the mechanical properties, crystallinity, and orientation of PP fibers. It was confirmed that by blending the fiber‐grade CR‐polymer by a small percentage of the molding‐grade polymer, maximization of elastic modulus is achieved, mainly because of higher orientation of amorphous domains. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1067–1082, 2006  相似文献   

5.
This study characterized the mechanical and thermal properties of the oligomer‐based formulations of the diglycidyl ether of bisphenol A (DGEBA) cured with series aliphatic amines (triethylenetetramine (TETA), tetraethylenepentamine (TEPA) and O,O bis (2‐aminopropyl propylene glycol) (Jeffamine D230) with different functionalities in the glassy state. Impact Izod and three‐point bending tests were conducted to determine the networks' impact energy (Ei), elasticity modulus (Ey), yield stress (σy) and fracture toughness (KIC) values. The same three‐point bending mode was also employed to characterize the systems' thermo‐mechanical properties (DMA) and storage modulus (E') and damping modulus (tan δ = E"/E') values. The DGEBA/D230 network showed greater flexibility, maximum impact energy, higher fracture toughness, and a lower yield stress than the DGEBA/TETA and DGEBA/TEPA networks. The fracture behavior of these epoxy systems was correlated to the molecular weight between the crosslink points, Mc, and the plastic zone size (rp) at the crack tip carved in the samples. The DGEBA/D230 network had the highest storage modulus and tan δ intensity, together with higher toughness and deformation during the network's fracture. These results were a consequence of the structural characteristics of comonomers, including their chain segment flexibility, molecular weight between crosslink points and functionality. POLYM. ENG. SCI., 54:2132–2138, 2014. © 2013 Society of Plastics Engineers  相似文献   

6.
We investigated the crystallization and orientation development in melt spinning and tubular blown film extrusion of several different types of polypropylenes, including conventional high tacticity isotactic polypropylenes (iPP) and metallocene catalyst low tacticity iPPs and syndiotactic polypropylenes (sPP). The fiber and film samples were characterized by wide‐angle X‐ray diffraction (WAXD), birefringence and differential scanning calorimetry (DSC). In melt spinning iPP, we found that the mesomorphic structure of iPP is more readily formed in lower tacticity fibers, and significant amounts of hexagonal β‐form crystals are found in low tacticity iPP fibers spun at high draw‐down ratios. Low tacticity iPP fibers exhibited a significant decrease in the crystalline chain‐axis orientation at high draw‐down ratios, resulting from increased epitaxially branched lamellae. Melt‐spun sPP fibers exhibit Form I helical structure at low spinning speeds and Form III zigzag all trans structure at high spinning speeds. We found that the level of spinline stress is the governing factor for this structural change. Melt‐spun sPP fibers exhibit much higher chain‐axis (c‐axis) orientation factors (fc) and lower birefringence than iPP fibers spun at the same spinline stresses. In tubular blown sPP films, the a‐axis of Form I unit cell tends to orient perpendicular to the film surface, while the b‐axis of monoclinic α unit cell does so in iPP blown films.  相似文献   

7.
Investigated in the present study are the physical properties, morphology, and structure of PP/N6 alloy filaments (10, 20 wt % N6) made with or without PP‐g‐MAH as compatibilizer. The alloy filaments produced at the take‐up speeds of 300 and 800 m/min were drawn with draw ratio of 3.5 and 2, respectively. Stress–strain curves of PP and alloy filaments show ductile and brittle behavior, respectively. It is suggested that the brittle behavior of alloy filaments is due to the presence of microvoids or micropores at the interface of PP and N6; these lead to stress concentration and thus to a decrease in tenacity, modulus, and elongation at break. Effects of the blending of N6 with PP on birefringence and crystalline and amorphous orientation factors of the composite filaments are studied. The amorphous orientation factor, fam, of PP was found to increase with an increase in the amount of N6. The alloy filaments behaved like isostrain materials and most of the force in spinning and drawing was born by the PP phase. The presence of N6 fibrils helped to orient PP chain molecules in amorphous regions. However, the crystalline factor, fc, of PP decreased with the increase in nylon fraction. This means the presence of the crystals of N6 caused a decrease in the orientation of the PP crystals. LSCM micrographs of the filament showed the presence of matrix–fibril morphology with the N6 fibrils oriented along the axis. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 532–544, 2005  相似文献   

8.
Comparison was made between the properties of recycled newspaper (RNP)/carbon black (CB) and recycled newspaper (RNP)/silica hybrid filled polypropylene (PP)/natural rubber (NR) composites. The properties studied were mechanical, thermal, and morphological. These composites were also subjected to natural weathering, i.e., the tropical climate in Penang, Malaysia, for 6 months. The incorporation of CB and silica at all weight ratios of RNP/CB and RNP/silica hybrid gave increases in tensile strength, elongation at break (EB), Young's modulus, melting temperature (Tm), heat of fusion of composites (ΔHf(com)), crystallinity of composites (Xcom), and the crystallinity of PP (XPP). As expected, the tensile properties (except for Young's modulus), Tm, ΔHf(com), Xcom, and XPP of the composites exhibited lower values after weathering than before weathering. The extent of chemical degradation was studied by Fourier transform infrared spectroscopy, and the results showed the formation of several functional groups, i.e., hydroxyl, hydroperoxide, vinyl, carboxylic acid, and ketone. At the same filler weight ratio, the composites filled with RNP/CB hybrid showed higher values of tensile strength and EB but lower values of Young's modulus, ΔHf(com), XPP, and XPP, as compared to those with the RNP/silica hybrid under weathering conditions. The good retention in tensile properties indicated that the replacement of RNP by CB and silica improved the weatherability performance of the PP/NR composites. J. VINYL ADDIT. TECHNOL., 2008. © 2008 Society of Plastics Engineers  相似文献   

9.
The influences of the dispersion level of carbon nanotubes (CNTs) and functionalized CNTs on the transmittance properties of ultrahigh‐molecular weight polyethylene (UHMWPE) gel solutions and on ultradrawing properties of their as‐prepared fibers are reported. The transmittance properties suggest that the dispersion level of functionalized CNTs in UHMWPE/functionalized CNTs gel solution is significantly better than plain CNTs in UHMWPE/CNTs gel solutions. The orientation factors, achievable draw ratios, tensile strength (σf), and modulus (E) values of UHMWPE/CNTs (FxCy) and UHMWPE/functionalized CNTs (FxCf‐y) as‐prepared fiber specimens reached a maximum value as their CNT and functionalized CNT contents approached optimum contents at 0.00015 and 0.0001 wt%, respectively. The σf and E values of both FxC0.0012 and FxCf‐0.001 series fiber specimens prepared at their optimum CNT and functionalized CNT contents reached another maximum as their UHMWPE approached optimum UHMWPE concentration of 1.7 wt%. Possible reasons accounting for these interesting properties are proposed. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

10.
In this study, we present an approach for the synthesis of novel phosphorous‐ or phenyl‐ containing polymers, 2phenyl, 3phospho, and 2phenylco‐3phospho, derived from ring‐opening metathesis polymerization (ROMP), to reduce the flammability of polypropylene (PP). The composites were processed by melt‐blending ROMP polymers and octaphenyl–polyhedral oligomeric silsesquioxane with PP/intumescent flame retardant (IFR) compounds at different compositions. The composites were characterized by limiting oxygen index (LOI), UL‐94, and mechanical tests as well as thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The molecular structures of phosphorous‐ and phenyl‐containing polymers were proved by 1H‐NMR, 13C‐NMR, and Fourier transform infrared spectroscopy. The online rheological measurements indicated that the addition of additives to the PP/IFR system increased the melt viscosity of the compounds regardless of the type. The DSC analysis showed that the addition of ROMP polymers to the PP/IFR system influenced the crystal perfection and degree of crystallization. TGA analysis of the composites revealed that the addition of ROMP polymers to PP/IFR compounds deteriorated the thermal stability as the amount of phosphorus increased in the matrix. Dynamic mechanical properties such as storage modulus (E′) and loss modulus (E″) of the composites were lowered by the addition of ROMP polymers. The LOI and UL‐94 rating of PP/IFR were enhanced by the addition of ROMP polymers. It was successfully demonstrated that the novel phosphorous‐ or phenyl‐containing polymers were highly potent additives in optimizing the flammability of PP composites. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45998.  相似文献   

11.
Influence of temperature on creep deformation for polypropylene PP fiber under a constant load was studied interferometrically. The automated multiple‐beam Fizeau system in transmission was equipped with a mechanical creep device attached to a wedge interferometer. This system was used to determine the optical properties (n, n?, and Δn) of PP fiber during the creep process at constant loading with varying temperature. The creep compliance was drawn as a function of both time and temperature. An empirical formula was suggested to describe the creep compliance curves for PP fibers and the constants of this formula were determined. Two Kelvin elements combined in series were used to provide an accurate fit to the experimental compliance curves. The stress–strain curve via creep was studied to determine some mechanical parameter of PP fibers, Young's modulus E, yield stress σy, and yield strain εy. The optical orientation function f(θ), the dielectric constant d, the dielectric susceptibility χ, the surface reflectivity , and the average work per chain W′ were also calculated. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
This study describes the reinforcement effect of surface modified mullite fibers on the crystallization, thermal stability, and mechanical properties of polypropylene (PP). The nanocomposites were developed using polypropylene‐grafted‐maleic anhydride (PP‐g‐MA) as compatibilizer with different weight ratios (0.5, 1.0, 1.5, 2.5, 5.0, and 10.0 wt %) of amine functionalized mullite fibers (AMUF) via solution blending method. Chemical grafting of AMUF with PP‐g‐MA resulted in enhanced filler dispersion in the polymer as well as effective filler‐polymer interactions. The dispersion of nanofiller in the polymer matrix was identified using scanning electron microscopy (SEM) elemental mapping and transmission electron microscopy (TEM) analysis. AMUF increased the Young's modulus of PP in the nanocomposites up to a 5 wt % filler content, however, at 10 wt % loading, a decrease in the modulus resulted due to agglomeration of AMUF. The impact strength of PP increased simultaneously with the modulus as a function of AMUF content (up to 5 wt %). The mechanical properties of PP‐AMUF nanocomposites exhibited improved thermal performance as compared to pure PP matrix, thus, confirming the overall potential of the generated composites for a variety of structural applications. The mechanical properties of 5 wt % of AMUF filled PP nanocomposite were also compared with PP nanocomposites generated with unmodified MUF and the results confirmed superior mechanical properties on incorporation of modified filler. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43725.  相似文献   

13.
This work throws light to study the changes of optical birefringence for cold drawn high density polyethylene (HDPE) thin film at different stresses. A stress–strain device connected to a scattering optical system was used to investigate the dynamical behavior of opto‐mechanical properties at room temperature (27°C ± 1°C). Some structural parameters, optical and mechanical orientation factors, f(θ), f2(θ), f4(θ), f6(θ), Fav, P2(θ), P4(θ), fc, and fm, were calculated. Also, the distribution segments at an angle (θ), the number of random links per chain (N1), the number of chains per unit volume (Nc), and the average work per chain W′ were calculated. The average value of the maximum birefringence was evaluated. The obtained studies demonstrate changes to the molecular orientation functions and evaluated micro structural parameters as a result of the applied cold‐drawing process on (HDPE) thin film. Relationships between the calculated parameters and draw ratios were presented for illustration. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

14.
Summary: Fibers were spun from a lyotropic solution of a high‐molecular‐weight (η = 5.89 g · dL?1), rigid‐rod, fully aromatic polyimide precursor polymer in a dry‐jet, wet‐spinning process in NMP. Acetone was identified as the coagulant of choice since fibers could be drawn extensively in this solvent, resulting in improved mechanical properties (tensile modulus: E = 17 GPa, strength at break: σbreak = 400 MPa, elongation at break: εbreak = 5.3%) and orientation, which was shown by WAXS patterns. SEM images showed a layered, skin‐core morphology without any visible fibrillation. Additional processing of these fibers by step‐wise hot‐drawing up to 400 °C under tension rendered oriented polyimide fibers with excellent mechanical properties. (E = 68 GPa, σbreak = 700 MPa, εbreak = 1%). An analysis of the WAXS diffraction patterns showed an improved orientation of the fibers in the axial and lateral directions; however, probably due to the CF3 side groups, the lateral distance was still too large for crystallization. SEM images of these imidized fibers showed, for the first time, a fibrillar morphology in addition to the typical, skin‐core, sheet‐like morphology.

SEM image of the hot‐drawn fiber PI 4 (12). The image shows a skin‐core morphology which was delaminating into ribbons during preparation.  相似文献   


15.
In this work, the effect of gradual addition of Al2O3 substituting SiO2 on the structural, thermal, and mechanical properties of SiO2–BaF2–K2O–GdF3–Sb2O3‐based oxyfluoride glasses have been studied. The X‐ray diffraction (XRD) patterns and differential scanning calorimetric (DSC) curves indicate that there is a distinct primary crystallization corresponding to BaGdF5 phase formation in the samples without (0AlG) and with 5 mol% substitution of Al2O3 (5AlG) while the sample with 10 mol% of Al2O3 (10AlG) does not show such crystallization event. Further, the activation energy (Ea) for fluoride crystal formation is higher for the 5AlG in comparison to the 0AlG glass as determined by Kissinger, Augis‐Bennett and Ozawa models. Fourier transform infrared (FTIR) and Raman spectroscopy analysis confirmed the structural modification with the gradual addition of Al2O3 in the glass matrix revealing dominant presence of AlO4 tetrahedral units in 10AlG sample unlike in 5AlG sample which exhibited the manifestation of AlO6 units. Such structural variation has further been substantiated from the estimated elastic properties like Young's modulus (E), shear modulus (G), bulk modulus (K), longitudinal modulus (L), and mean ultrasonic velocity (Um) by showing a decrease for 5AlG sample in comparison with 0AlG sample followed by subsequent increase for 10AlG sample.  相似文献   

16.
We report on the process–structure–property relationships for Poly(lactic acid) (PLA) filaments produced through the spunbond process. The influence of spinning speed, polymer throughput, and draw ratio on crystallinity and birefringence of fibers were evaluated. We established that increasing spinning speed increases crystallinity and birefringence of fibers. We also investigate the role of fiber structures on fiber tensile properties—breaking tensile strength, strain at break, initial modulus, and natural draw ratio. An increase in spinning speed leads to a higher breaking tensile strength, higher initial modulus and lower strain at break. We have shown an almost linear relationship between breaking tensile strength of PLA fibers and birefringence. This indicates that improved tensile properties at high spinning speeds can be attributed to enhanced molecular orientation. The dependency of fiber breaking tensile strength and strain at break on spun orientation were explained with natural draw ratio, as a measure of spun orientation. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44225.  相似文献   

17.
The effect of different coagents on the physico‐chemical properties of NBR/HDPE composites reinforced with 40 phr (part per hundred part of rubber by weight) HAF carbon black and cured with accelerated electrons was investigated. The coagents N,N′‐methylene bisacrylamide (MBAAm) and trimethylol propane trimethacrylate (TMPTMA) were used at a constant content of 10 phr. The physico‐chemical properties such as tensile strength, tensile modulus at 50% elongation (M50), elongation at break (Eb), hardness, soluble fraction (SF), swelling number (SN), electrical conductivity, and thermal properties were studied. The results obtained showed that the TMPTMA as a coagent is more effective than MDA in enhancing the mechanical and physical properties of NBR/HDPE vulcanized composites. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   

18.
The mechanical, thermal, and structural properties of a new flexible composite containing polypropylene fiber (PP) in a random poly(propylene‐co‐ethylene) (PPE) matrix with ethylene–propylene elastomer (EP) was investigated with emphasis on the effect of EP elastomer concentration. The intrinsic composition of the composites, toughening of the matrix with EP and the fiber–matrix interface determined the properties of the composites. Through the incorporation of EP elastomer into the polypropylene–poly (propylene‐co‐ethylene) (all‐PP) composite, tensile and storage modulus (E′) decreased, flexural modulus and loss modulus (E″, damping) increased slightly to 0.15 EP and then decreased. There was an increase in impact resistance for the toughened composites, with about 100% increase in comparison with an untoughened all‐PP composite. The composition corresponding to 0.20 weight fraction EP gave optimum impact and mechanical properties. Creep resistance of the composite decreased with increasing EP content, but recovery showed an increase with increasing EP content up to 0.20. Fracture surfaces of composites after impact tests were studied with scanning electron microscopy. Moreover, the use and limitation of theoretical equations to predict the tensile and flexural modulus of the flexible PP composite is discussed. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

19.
The tensile properties of polypropylene (PP) filled with two A‐glass beads with the same size, PP/3000 (glass bead surface pretreated with a silane coupling agent) and PP/3000U (no surface pretreatment), have been measured by using an Instron materials testing machine at room temperature, to identify the effects of the filler surface pretreatment and its content on the tensile properties of these composites. The results show that the Young's modulus Ec of the composites increases non‐linearly with increasing volume fraction of glass beads ϕf, while the tensile yield strength σyc and tensile stress at break σbc of the composites decrease with an increase of ϕf, in the ϕf range 0–30%. Furthermore, the values of Ec and σbc of the PP/3000 system are somewhat higher than those of the PP/3000U system under the same test conditions, but this is in contrast to the tensile strain at break εbc and tensile fracture energy Ebc, especially at higher ϕf values. Good agreement is shown between the measured tensile strength and the predicted value by using an equation proposed in previous work. In addition, εbc and Ebc reach maximum values at ϕf = 25% for both systems. This indicates that there is a brittle–ductile transition for the composites in tension. © 2000 Society of Chemical Industry  相似文献   

20.
High‐density polyethylene (HDPE) fibers, obtained from a melt‐flow rate (g/10 min) of 11 and 28, was produced by a high‐speed melt‐spinning method in the range of take‐up velocity from 1 to 8 km/min and from 1 to 6 km/min, respectively. The change of fiber structure and physical properties with increasing take‐up velocity was investigated through birefringence, wide‐angle X‐ray diffraction (WAXD), differential scanning calorimetry (DSC), a Rheovibron, and a Fafegraph‐M. With an increase in take‐up velocity, the birefringence showed a sigmoidal increase, which has distinct changes in the range of 1–5 km/min. Throughout the whole take‐up velocities, the birefringence of HDPE(11) was higher than that of HDPE(28). With increasing take‐up velocity, the crystalline orientation was transformed from a‐axis orientation to c‐axis orientation. These crystalline relaxations are confirmed by the tan δ peak of high‐speed spun HDPE fibers. The intensity of the crystalline relaxation peak decreases with increasing take‐up velocity in both HDPE(11) and HDPE(28). As above, the crystalline relaxation peaks shift to lower temperature with increasing take‐up velocity. With increasing take‐up velocity, the ultimate strain decreases while both specific stress and the initial modulus increase. The mechanical behavior may be closely related to, as investigated by birefringence, orientation of the amorphous region, etc., the take‐up velocity. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 1182–1195, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号