首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Al3+‐attapulgite (Al3+‐APT) was prepared by treating attapulgite (APT) with AlCl3 aqueous solution of various concentrations. The poly(acrylic acid)/Al3+‐attapulgite (PAA/Al3+‐APT) superabsorbent composite was prepared by reaction of partly neutralized acrylic acid, and Al3+‐APT in aqueous solution using N, N′‐methylenebisacrylamide as a crosslinker and ammonium persulfate as an initiator. The surface morphology of the composite was investigated by SEM, and the Al3+‐APT composite generated a relatively planar surface comparing the nature APT. The effects of Al3+‐APT on hydrogel strength and swelling behaviors, such as equilibrium water absorbency, swelling rate, and reswelling capability, of the superabsorbent composites were also studied. The hydrogel strength and reswelling capability were improved, however, the equilibrium water absorbency and swelling rate decreased with increasing AlCl3 solution concentration. The equilibrium water absorbency firstly increased, and then decreased with increasing Al3+‐APT content. The results indicate that Al3+‐APT acts as an assistant crosslinker in the polymeric network, which has great influences on hydrogel strength and swelling behaviors of the PAA/Al3+‐APT superabsorbent composites. POLYM. ENG. SCI., 47:619–624, 2007. © 2007 Society of Plastics Engineers.  相似文献   

2.
In this work, a series of chitosan‐g‐poly(acrylic acid)/sepiolite (CTS‐g‐PAA/ST) superabsorbent composites containing raw sepiolite, acid‐activated sepiolite, and cation‐exchanged sepiolite were synthesized by free‐radical graft polymerization in aqueous solution, using N,N′‐methylenebisacrylamide as a crosslinker and ammonium persulfate as an initiator. The effects of raw sepiolite, acid‐activated sepiolite, and cation‐exchanged sepoilite on equilibrium water absorbency, swelling rate, and swelling behavior in different pH value solution of superabsorbent composites were systematically investigated. The results from FTIR spectra showed that chitosan and sepiolite participated in graft polymerization reaction with acrylic acid. The introduction of acid‐activated and cation‐exchanged sepiolite into chitosan‐g‐poly(acrylic acid) polymeric network could improve water absorbency and swelling rate compared with that of the raw sepiolite. All prepared samples have similar swelling behavior in different pH solutions and the equilibrium water absorbencies of samples keep roughly constant in the pH range from 4 to 12. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

3.
A series of hydroxyethyl cellulose-g-poly(acrylic acid)/vermiculite (HEC-g-PAA/VMT) superabsorbent nanocomposites were prepared by radical solution polymerization among hydroxyethyl cellulose (HEC), partially neutralized acrylic acid (AA), raw vermiculite (RVMT), acidified vermiculite (AVMT) and organo-vermiculite (OVMT) in the presence of initiator ammonium persulfate (APS) and crosslinker N,N’-methylenebisacrylamide (MBA). FTIR results revealed that AA was grafted onto HEC backbone and VMT participated in polymerization. VMT was exfoliated during polymerization reaction and a nanocomposite structure was formed as shown by XRD and TEM analysis. Effects of VMT content, concentration of HCl solution and organification degree of OVMT on water absorbency were investigated and the swelling kinetics of the developed nanocomposites was also evaluated. Results showed that incorporation of VMT greatly enhanced the water absorbency, and the modified VMT by acidification and organification can improve the water absorbency more remarkably than raw one. OVMT can improve the swelling capabilities and swelling rate to the highest degree in contrast to RVMT and AVMT.  相似文献   

4.
A novel chitosan‐g‐poly(acrylic acid)/organo‐rectorite (CTS‐g‐PAA/OREC) nanocomposite superabsorbent was synthesized by aqueous polymerization using N, N′‐methylenebisacrylamide as a crosslinker and ammonium persulfate as an initiator. Rectorite was organified with four different degree of hexadecyltrimethyl ammonium bromide, and the organification of rectorite was proved by FTIR and XRD. The effect of organification degree of rectorite on water absorbency of CTS‐g‐PAA/OREC with different organo‐rectorite content was investigated. The swelling behaviors in distilled water and various pH solutions were also studied. The results from IR spectroscopy and XRD data show that acrylic acid had been grafted polymerization with chitosan and organo‐rectorite and formed nanocomposite. Introducing organo‐rectorite into the CTS‐g‐PAA polymeric network can improved water absorbency and swelling rate of CTS‐g‐PAA/OREC. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

5.
A series of superabsorbent composite, polyacrylamide/attapulgite, from acrylamide (AM) and ion‐exchanged attapulgite (APT) was prepared by aqueous polymerization, using N,N′‐methylenebisacrylamide (MBA) as a crosslinker and ammonium persulfate (APS) as an initiator. The effects of ion‐exchanged APT on water absorbency of superabsorbent composites in distilled water and in 0.9 wt% NaCl solution were studied. The result indicates that higher cation‐exchange capacity (CEC) and lower specific surface area (SSA) of APT treated with various anions are of benefit for improving water absorbency in distilled water. The effects of AlCl3 solution concentration and Al3+‐exchanged APT content on water absorbency of the composite were also investigated. The concentration of AlCl3 solution has a great influence on water absorbency of the superabsorbent composite. Al3+‐exchange of APT could also enhance reswelling ability of the corresponding composite, which indicates that Al3+‐exchange of APT could improve gel strength and gives a direct evidence for its acting as an inorganic assistant crosslinker in the polymeric network. POLYM. COMPOS., 28:208–213, 2007. © 2007 Society of Plastics Engineers  相似文献   

6.
A novel superabsorbent composite, poly(acrylic acid‐co‐acrylamide)/potassium humate (PAA‐AM/KHA), was prepared by aqueous solution polymerization from acrylic acid, acrylamide, and potassium humate (KHA) with N,N′‐methylenebisacrylamide as a crosslinker and potassium peroxydisulfate as an initiator. The effects of incorporated KHA on the water absorbency, swelling rate, and reswelling capability were investigated. The swelling property of PAA‐AM/KHA in various saline solutions was studied systematically. The results show that the comprehensive properties and especially salt‐resistant ability of PAA‐AM/KHA were enhanced. There was a linear relationship between the saturated water absorbency and the minus square root of the ionic strength of the external medium, and the water absorbency of PAA‐AM/KHA in various salt solutions had the following order: NH4Cl(aq) = KCl(aq) = NaCl(aq) > MgCl2(aq) > CaCl2(aq) > AlCl3(aq) > FeCl3(aq). Moreover, the polymeric net structure of PAA‐AM/KHA was examined with respect to that of poly(acrylic acid‐co‐acrylamide). The results indicate that the polymeric net of PAA‐AM/KHA was improved by the introduction of a moderate amount of KHA into the superabsorbent composite and made more suitable for agriculture and horticulture applications. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

7.
A novel superabsorbent composite, polyacrylamide/attapulgite, from acrylamide (AM) and attapulgite (APT), was prepared by free‐radical polymerization, using N,N′‐methylenebisacrylamide (MBA) as a crosslinker and ammonium persulfate (APS) as an initiator. The effects of hydrochloric acid (HCl) concentration, acidification time, and acidification temperature while acidifying APT and temperature and APT heat‐activation on water absorbency of the superabsorbent composite in distilled water and in 0.9 wt % NaCl solution were studied. The water absorbency first decreases with increasing the HCl concentration while acidifying APT, and then increases with further increasing the HCl concentration. Prolongation of acidification time is of benefit to the increase of water absorbency. At a given HCl concentration, water absorbency for the composite increases with increasing acidification temperature. An important increase in water absorbency was observed after incorporating heat‐activated APT into the polymeric network, reaching a maximum of 1964 g g?1 with the APT heat‐activated at 400°C. Acid‐ and heat‐activation can influence chemical composition, crystalline structure, cation exchange capacity (CEC), and specific surface area of APT according XRF, XRD, FTIR analysis, and physicochemical properties test, and then on water absorbency of corresponding PAM/APT superabsorbent composite. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2419–2424, 2007  相似文献   

8.
The effect of the attapulgite content on the swelling for a series of poly(acrylic acid)/attapulgite superabsorbent composites in water was studied. The effects of the temperature and pH values on the water absorbency of the superabsorbent composites were investigated. The swelling behavior of the superabsorbent composites in various saline solutions was also investigated. The water absorbency in various salt solutions decreased with an increase in the ionic strength of the solutions. At a high ionic strength (>1 × 10?3M), the water absorbency in monovalent cationic solutions was higher than that in multivalent cation solutions. This dramatic reduction of the water absorbency in multivalent cationic solutions of high ionic strength may have been due to the complexing ability of the carboxylate groups inducing the formation of intramolecular and intermolecular complexes, which resulted in an increased crosslink density of the network. The swelling behavior of the superabsorbent composites in mixtures of water and hydrophilic solvents, including methanol, acetone, ethanol, and dimethyl sulfoxide (DMSO), was also investigated. The water absorbency decreased with an increase in the concentration of any of the four organic solvents, and two transitions were observed in the superabsorbent composite/hydrophilic solvent–water mixture systems. The main transition for the four hydrophilic solvent–water mixtures was a collapse of the swollen gel (at 50–80% methanol, 30–80% acetone, 50–80% ethanol, and 50–80% DMSO). For the methanol–water system, the magnitudes of the first and second transitions for the poly(acrylic acid)/attapulgite superabsorbent composites containing lower proportions of attapulgite were larger than those for the superabsorbent composites with higher attapulgite contents. The effect of the mixture temperature on the water absorbency of the superabsorbent composites in 10 min was also reported. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1869–1876, 2004  相似文献   

9.
A series of superabsorbent composites were prepared from acrylic acid (AA), acrylamide (AM), and Cloisite® 30B by aqueous solution polymerization technique using ammonium peroxodisulfate (APS) as initiator. The interaction of the organically modified nanoclay with PAA‐co‐PAM copolymer was verified by FTIR, whereas the morphology of the composite was studied by Scanning Electron Microscopy (SEM). The water absorbency in deionized water and saline water of the synthesized nanohydrogels was measured by calculating their percentage swelling ratio. The effects of copolymerization, monomer ratio, clay content, and temperature on the water absorbency were studied. The results indicated a considerable increase in swelling ratio by proper monomer proportion and incorporation of optimum clay percentage into the copolymer matrix. It was found that the nanohydrogel acquired highest water absorbency with 2% clay loading. The reswelling ability and water retention capacity of the PAA‐co‐PAM hydrogel and PAA‐co‐PAM/clay nanohydrogel were also measured. The water absorbency was found to increase after each reswelling for which it may be useful as recyclable superabsorbent material. The results of water retention capacity of the nanohydrogel were also encouraging and find application in agriculture, especially in drought‐prone areas. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
The dispersion of attapulgite (APT) as nanorod‐like single crystals is crucial to fully develop its functionality of one‐dimensional nanometer material as a filler of composite materials. In this study, APT was dispersed by the assistance of ethanol during the high‐pressure homogenization process to form individual nanorod‐like crystals. The dispersed APT was used to prepare new sodium alginate‐g‐poly(sodium acrylate‐co‐styrene)/attapulgite (NaAlg‐g‐P(NaA‐co‐St)/APT) superabsorbent nanocomposites. The effect of ethanol/water ratio on the dispersion of crystal bundles of APT was investigated by field emission scanning electron microscopy, and the results indicate that APT crystal bundles were effectively disaggregated in ν(CH3CH2OH) : ν(H2O) ? 5 : 5 solution after homogenized at 50 MPa. The better dispersion of APT in NaAlg‐g‐P(NaA‐co‐St) matrix has clearly improved the gel strength (from 1300 Pa to 1410 Pa, ω = 100 rad/s), swelling capacity (442–521 g/g), swelling rate (3.3303–4.5736 g/g/s), and reswelling ability of the superabsorbent nanocomposite. Moreover, the nanocomposites showed fast swelling–deswelling responsive behavior in different saline solutions. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

11.
A novel hydroxyethyl chitosan‐g‐poly(acrylic acid‐co‐Sodium Acrylate) (HECTS‐g‐(PAA‐co‐PSA)) superabsorbent polymer was prepared through graft copolymerization of acrylic acid and sodium acrylate onto the chain of hydroxyethyl chitosan. The structure of the polymer was characterized by FTIR. By studying the water absorption of the polymer synthesized under different conditions, the optimal conditions for synthesizing the polymer with the highest swelling ratio was defined. This superabsorbent polymer was further treated by the solvent precipitation method and by the freeze‐drying method. We found that the water absorption rate of the treated polymer was greatly increased and the microstructure of the treated polymer was changed from small pores to loose macro pores. The swelling processes of the polymers before and after modification fit first‐order dynamic processes. The amount of the residual acrylic acid was greatly decreased after treatments. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

12.
Summary: Organo‐attapulgite (organo‐APT) was prepared by modifying APT using four quaternary ammonium salts with various lengths of the alkyl group, including (octyl)trimethylammonium bromide (OTMABr) and (stearyl)trimethylammonium chloride (STMACl), etc. A series of composite hydrogels, poly(acrylic acid)/organo‐APT, from acrylic acid (AA), and organo‐APT was prepared by aqueous polymerization, using N,N′‐methylenebisacrylamide (MBA) as a crosslinker and ammonium persulfate (APS) as an initiator. The organification and organification degree of APT as well as the corresponding composites were characterized by FTIR, TGA, and XRD. The effects of the length of the alkyl group for different quaternary ammonium salts, organification degree of APT, and organo‐APT content on water absorbency and swelling behaviors in various electrolyte solutions were investigated in this study. Equilibrium water absorbency strongly depends on chain length of the alkyl group of quaternary ammonium salts, organification degree of APT as well as organo‐APT content. Longer alkyl group, higher organification degree, and proper organo‐APT content are of benefit for the improvement of equilibrium water absorbency. Equilibrium water absorbency in distilled water for PAA/APT was enhanced from 350.1 to 562.1 g · g?1 after 10 wt.‐% organo‐APT, modified with STMACl for the highest degree, was introduced. The kind of cation is the key factor influencing equilibrium water absorbency of these composite hydrogels in electrolyte solutions. Organification of APT could enhance responsiveness of the corresponding composite hydrogel to electrolyte solutions.

Schematic structure of PAA/organo‐APT composite in a dry state (left) and in a swollen state (right).  相似文献   


13.
A novel salt‐resistant superabsorbent composite was prepared by copolymerization of partially neutralized acrylic acid, 2‐acryloylamino‐2‐methyl‐1‐propanesulfonic acid (AMPS) and attapulgite (APT). To enhance the swelling rate (SR) of the copolymer, sodium bicarbonate was used as a foaming agent in the course of copolymerization. Furthermore, for improving the properties of swollen hydrogel, such as strength, resilience and dispersion, the copolymer was surface‐crosslinked with glycerine and sodium silicate, and then the surface‐crosslinked copolymer was blended with aluminum sulfate and sodium carbonate in post treatment process. The influences of some reaction conditions, such as amount of AMPS, APT, and initiator, and neutralization degree of acrylic acid on water absorbency in 0.9 wt% NaCl aqueous solution both under atmospheric pressure (WA) and load (WAP, P ≈ 2 × 103 Pa) were investigated. In addition, the effect of them on SR was also studied. The WA and WAP of the superabsorbent composite prepared under optimal conditions in 0.9 wt% NaCl aqueous solution were 52 g·g?1 and 8 g·g?1, respectively. Besides, the SR was fast, and it could reach 0.393 mL·(g·s)?1. Moreover, the swollen hydrogel possessed excellent salt resistance, hydrogel resilience and dispersion. POLYM. ENG. SCI., 2009. © 2008 Society of Plastics Engineers  相似文献   

14.
A series of pH‐sensitive composite hydrogel beads, carboxymethyl cellulose‐g‐poly(acrylic acid)/attapulgite/sodium alginate (CMC‐g‐PAA/APT/SA), were prepared by combining CMC‐g‐PAA/APT composite and SA, using Ca2+ as the ionic crosslinking agent and diclofenac sodium (DS) as the model drug. The effects of APT content and external pH on the swelling properties and release behaviors of DS from the composite hydrogel beads were investigated. The results showed that the composite hydrogel beads exhibited good pH‐sensitivity. Introducing 20% APT into CMC‐g‐PAA hydrogel could change the surface structure of the composite hydrogel beads, decrease the swelling ability, and relieve the burst release effect of DS. The drug cumulative release ratio of DS from the hydrogel beads in simulated gastric fluid was only 3.71% within 3 hour, but in simulated intestinal fluid about 50% for 3 hour, 85% for 12 hour, up to 90% after 24 hour. The obtained results indicated that the CMC‐g‐PAA/APT/SA hydrogel beads could be applied to the drug delivery system as drug carriers in the intestinal tract. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
A novel poly(acrylic acid)/attapulgite superabsorbent composite was synthesized by graft copolymerization reaction of acrylic acid (AA) on attapulgite micropowder using N,N′‐methylenebisacrylamide (MBA) as a crosslinker and ammonium persulfate (APS) as an initiator in aqueous solution. The effects on water absorbency of such factors as reaction temperature, initial monomer concentration, degree of neutralization of AA, amount of crosslinker, initiator, and attapulgite were investigated. These crosslinked superabsorbent composites were characterized by thermogravimetetric analysis and scanning electron microscopy. The graft copolymerization reaction of AA on attapulgite micropowder was characterized by FTIR. The water absorbencies for these superabsorbent composites in water and saline solutions were investigated and water‐retention tests were carried out. Results obtained from this study show that the water absorbency of the superabsorbent composite synthesized under optimal synthesis conditions with an attapulgite content of 10% exhibited an absorption of 1017 g H2O/g sample and 77 g H2O/g sample in distilled water and in 0.9 wt % NaCl solution, respectively. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1596–1603, 2004  相似文献   

16.
A novel poly(acrylic acid)/attapulgite (APT)/sodium humate (SH) superabsorbent composite was synthesized through the graft copolymerization reaction of acrylic acid on APT micropowder and SH with N,N′‐methylene bisacrylamide as a crosslinker and ammonium persulfate as an initiator in an aqueous solution. Various effects on the water absorbency, including the amounts of the crosslinker, initiator, APT, and SH, were investigated. The superabsorbent composite was characterized with Fourier transform infrared spectroscopy and scanning electron microscopy. The superabsorbent composite synthesized under optimal synthesis conditions with an APT concentration of 20% and an SH concentration of 20% exhibited absorption of 583 g of H2O/g of sample and 63 g of H2O/g of sample in distilled water and in a 0.9 wt % NaCl solution, respectively. The slow‐release property of SH from the superabsorbent composite into water was measured, and a test of the water retention of the superabsorbent composite in soil was also carried out experimentally with and without the superabsorbent composite. The results showed that the superabsorbent composite had not only good water retention but also an additional slow‐release property of SH. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 37–45, 2007  相似文献   

17.
Two series of superabsorbent hydrogel composites were prepared using waste linear low‐density polyethylene, acrylic acid, and two types of clays including kaolin and halloysite nanotube (HNT) through emulsion polymerization. The effects of the clay content on Water absorbency were investigated to obtain a high swelling capacity. The prepared samples were characterized using FTIR, SEM, thermogravimetric analysis, XRD, solid‐state 13C Nuclear Magnetic Resonance spectroscopy, and 29Si NMR. SEM characterization of the samples showed that the hydrogel composites have more pores and a higher swelling ratio than the clay‐free hydrogels. The hydrogel composite containing kaolin had higher water absorbency compared to the hydrogel composites with HNT. The swelling behavior of the hydrogel composite was investigated in various saline solutions. The hydrogel composite containing 5 wt % kaolin had the highest water absorbency (760 g/g in distilled water). © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40101.  相似文献   

18.
In this work, the effects of different cation‐exchanged montmorillonite on water absorbency of poly(acrylic acid‐co‐acrylamide)/montmorillonite/sodium humate (PAA‐AM/MMT/SH) superabsorbent composite were systematically investigated under the same preparation conditions. The superabsorbents doped with different cation‐exchanged montmorillonite were characterized by Fourier‐transform infrared spectroscopy, X‐ray diffraction, and scanning electron microscopy technologies. Swelling behaviors of developing superabsorbent composite in various cationic saline solutions (NaCl, CaCl2, and FeCl3) were also investigated. The water absorbencies of superabsorbent composite with 20 wt% MMT and 30 wt% SH are 638, 723, 682, and 363 g g−1 in distilled water for incorporating natural Na+‐MMT, Li+‐exchanged MMT, Ca2+‐exchanged MMT, and Al3+‐exchanged MMT, respectively. The results showed that the cation‐exchange process had some obvious influences on final water absorbency of superabsorbent composite. NaCl, CaCl2, and FeCl3 solutions did not alter the swelling characteristics of the superabsorbent materials at a concentration of less than 0.01 mM, however, a concentration of greater than 0.1 mM caused a collapse in the swelling curves. The excellent swelling‐reswelling‐swelling behavior and lower swelling rate testified that Al3+‐exchanged MMT can act as an assistant crosslinker in the polymeric network. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

19.
A novel starch‐graft‐poly(acrylamide)/attapulgite superabsorbent composite was synthesized by graft copolymerization reaction of starch, acrylamide (AM), and attapulgite micropowder using N.N‐methylene‐bisacrylamide (MBA) as a crosslinker and ammonium persulphate (APS) as an initiator in aqueous solution, followed by hydrolysis with sodium hydroxide. The effects on water absorbency, such as amount of crosslinker, initiator, attapulgite, weight ratio of acrylamide to starch in the feed, gelatinization conditions of starch and molar ratio of NaOH to acrylamide, and so forth, were investigated. These superabsorbent composites were characterized by Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). The water absorbencies for these superabsorbent composites in water and saline solution were investigated, and water retention tests were carried out. Results obtained from this study showed that the water absorbency of superabsorbent composite synthesized under optimal synthesis conditions with an attapulgite content of 10% exhibit absorption of 1317 g H2O/g sample and 68 g H2O/g sample in distilled water and in 0.9 wt % NaCl solution, respectively. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1351–1357, 2005  相似文献   

20.
In this work, a novel poly(acrylic acid‐coN‐acryloylmorpholine)/attapulgite superabsorbent composite was prepared by graft copolymerization among acrylic acid, N‐acryloylmorpholine and attapulgite in aqueous solution, using N,N′‐methylenebisacrylamide as a crosslinker and ammonium persulfate as an initiator. The result from FTIR spectra showed that  OH of attapulgite participated in graft copolymerization with acrylic acid and N‐acryloylmorpholine. Proper monomer ratio and atapulgite content could form a loose surface, and improve reswelling ability and initial swelling rate. The buffer action of the  COOH and  COO groups in the superabsorbent composite keeps the water absorbency a rough constant in the pH range of 4.4–9.6. Both polarity and structure of an organic solvent are responsible for the phase transition point of the superabsorbent composite. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号