首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, water acts as a co-blowing agent to support carbon dioxide (CO2) in the extrusion foaming process of polystyrene (PS) to produce foams with very low density for thermal insulation applications. Herein, we report a simple suspension polymerization method to prepare water expandable polystyrene (WEPS) based on a PS/water containing activated carbon (AC) composite. AC pre-saturated with water was introduced into the styrene monomer to form a water-in-oil inverse emulsion without emulsifiers. Via suspension polymerization, water expandable PS/AC (WEPSAC) beads could be subsequently obtained. Low density PS foams (∼0.03 g/cc) were successfully produced in the CO2 extrusion foaming process using WEPSAC. Because of lower foam density and better IR absorption due to the presence of water containing AC, WEPSAC foams provided a lower thermal conductivity than conventional talc reinforced PS foams.  相似文献   

2.
Extrusion foaming using supercritical carbon dioxide (CO2) as the blowing agent is an economically and environmentally benign process. However, it is difficult to control the foam morphology and maintain its high thermal insulation comparing to the conventional foams based on fluorocarbon blowing agents. In this study, we demonstrated that polystyrene (PS) foams with the bimodal cell morphology can be produced in the extrusion foaming process using CO2 and water as co-blowing agents and two particulate additives as nucleation agents. One particulate is able to decrease the water foaming time so both CO2 and water can induce foaming simultaneously, while the other increases the CO2 nucleation rate with little effect on the CO2 foaming time. Our experimental results showed that a dual particulate combination of nanoclay and activated carbon provided the best bimodal structure. The bimodal foams exhibited much better compressive properties and slightly better thermal insulation for PS foams.  相似文献   

3.
Cailiang Zhang 《Polymer》2011,52(8):1847-1855
Carbon particles such as platelet-like graphite (GR), spherically shaped activated carbon (AC), and tubular carbon nanofiber (CNF) were used as additives in extruded polystyrene (PS) foams with carbon dioxide (CO2) and water as co-blowing agents. It was found that GR is the best additive for improving the thermal insulation performance of CO2 based foam samples because of GR’s good absorption and reflectivity of infrared (IR) radiation. However, when the GR concentration was higher than 0.5 wt.%, the extruded foams exhibited large bubbles in the center of the foam and the extrusion line became unstable. By adding water carried by AC as a co-blowing agent, it was able to decrease the temperature in the center of the extruded foam, which successfully eliminated the bubble problem and achieved stable foam extrusion with good control of the foam density and cell morphology. Moreover, water carried by AC could also improve the mechanical performance of extruded foams containing CNF or GR. Water was not found in the extruded foams and the presence of water during extrusion did not affect the molecular weight and glass transition temperature of PS. Our results showed that a combination of AC as a water carrier and GR as an absorber and reflector of IR radiation can produce CO2 based PS foams with good thermal insulation and mechanical properties, particularly with the presence of a small amount of CNF nanoparticles.  相似文献   

4.
The equation of state model developed by Lacombe and Sanchez (J Phys Chem 1976, 80, 2352) is used in the form proposed later by Sanchez and Stone (Polymer Blends, Vol. 1: Formulation, 2000; Chapter 2) to correlate experimental vapor‐liquid equilibrium (VLE) data for the three binaries and the ternary systems. Experimental data from the binary systems carbon dioxide‐isopropyl alcohol (CO2‐IPrOH), isopropyl alcohol‐polystyrene (IPrOH‐PS), and carbon dioxide‐polystyrene (CO2‐PS) are used to calculate VLE properties for the ternary system CO2‐IPrOH‐PS. Two‐dimensional VLE‐phase diagrams were calculated and used to describe from a thermodynamic point of view the pressure, volume, and temperature values that characterize a thermoplastic foam evolution process, from the extruder to the foaming die. For different initial mixture CO2 + IPrOH concentrations, pressure reduction produces liquid foaming until the vitrification curve arrests the final foam volume expansion. The dependence of the vitreous transition with the system CO2 + IPrOH concentration while foaming is represented by the Chow (Macromolecules 1980, 13, 362) equation. The calculation procedure is proposed as a design tool to reduce the amount of experimental data usually needed as a requirement previous to the design stage. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 2663–2671, 2007  相似文献   

5.
Jiong Shen 《Polymer》2006,47(18):6303-6310
The typical process used to synthesize water expandable polystyrene (WEPS) was modified and applied to prepare water expandable polystyrene (PS)-clay nanocomposites (WEPSCN). The natural clay can be uniformly dispersed in water due to its hydrophilicity. It can be further carried into the styrene monomer by the formation of water-in-oil inverse emulsion. Via suspension polymerization, spherical PS beads with myriads of water/clay droplets inside were obtained. Upon heating via the hot medium, the PS matrix was expanded to form a cellular structure. Transmission electron microscopy results indicated that nanoclay forms a layer around the cell wall. The presence of nanoclay led to higher water content in the beads and reduced the water loss during storage.Using CO2 as the co-blowing agent, foams with a bi-model structure and lower densities were obtained. Furthermore, CO2 foaming offers an alternative method to utilize dried WEPS/WEPSCN beads. The presence of water cavities significantly enlarges the cell size and leads to a foam product with ultra-low density (∼0.03 g/cc) and low thermal conductivity.  相似文献   

6.
The article surveyed the fabrication of polystyrene (PS)/nano‐CaCO3 foams with unimodal or bimodal cellular morphology from extrusion foaming using supercritical carbon dioxide (sc‐CO2). In order to discover the factors influenced the cell structure of PS/nano‐CaCO3 foams, the effects of die temperature, die pressure, and nano‐CaCO3 content on cell size, density, and morphology were investigated detailed. The results showed that the nano‐CaCO3 content affected the cell size and morphology of PS/nano‐CaCO3 foams significantly. When the die temperature and pressure was 150°C and 18 MPa, respectively, the foams with 5 wt% nano‐CaCO3 exhibited the unimodal cellular morphology. As the nano‐CaCO3 content increased to 20 wt%, a bimodal cell structure of the foams could be obtained. Moreover, it was found that the bimodal structure correlated more strongly with the pressure drop than the foaming temperature. The article revealed that unimodal or bimodal cellular morphology of PS/nano‐CaCO3 foams could be achieved by changing the extrusion foaming parameters and nano‐CaCO3 content. POLYM. COMPOS., 37:1864–1873, 2016. © 2015 Society of Plastics Engineers  相似文献   

7.
Nanocellular foaming of polystyrene (PS) and a polystyrene copolymer (PS‐b‐PFDA) with fluorinated block (1,1,2,2‐tetrahydroperfluorodecyl acrylate block, PFDA) was studied in supercritical CO2 (scCO2) via a one‐step foaming batch process. Atom Transfer Radical Polymerization (ATRP) was used to synthesize all the polymers. Neat PS and PS‐b‐PFDA copolymer samples were produced by extrusion and solid thick plaques were shaped in a hot‐press, and then subsequently foamed in a single‐step foaming process using scCO2 to analyze the effect of the addition of the fluorinated block copolymer in the foaming behaviour of neat PS. Samples were saturated under high pressures of CO2 (30 MPa) at low temperatures (e.g., 0°C) followed by a depressurization at a rate of 5 MPa/min. Foamed materials of neat PS and PS‐b‐PFDA copolymer were produced in the same conditions showing that the presence of high CO2‐philic perfluoro blocks, in the form of submicrometric separated domains in the PS matrix, acts as nucleating agents during the foaming process. The preponderance of the fluorinated blocks in the foaming behavior is evidenced, leading to PS‐b‐PFDA nanocellular foams with cell sizes in the order of 100 nm, and bulk densities about 0.7 g/cm3. The use of fluorinated blocks improve drastically the foam morphology, leading to ultramicro cellular and possibly nanocellular foams with a great homogeneity of the porous structure directly related to the dispersion of highly CO2‐philic fluorinated blocks in the PS matrix. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

8.
In the present work blends of polystyrene (PS) with sepiolites have been produced using a melt extrusion process. The dispersion degree of the sepiolites in the PS has been analyzed by dynamic shear rheology and X-ray micro-computed tomography. Sepiolites treated with quaternary ammonium salts (O-QASEP) are better dispersed in the PS matrix than natural sepiolites (N-SEP) or sepiolites organo-modified with silane groups (O-SGSEP). A percolated network is obtained when using 6.0 wt% of O-QASEP, 8.0 wt% of N-SEP and 10.0 wt% of O-SGSEP. It has been shown that multiple extrusion processes have a negative effect on the polymer architecture. They produce a reduction in the length of the polymeric chains, and they do not lead to a better dispersion of the particles in the polymer matrix. Foams have been produced using a gas dissolution foaming process, where a strong effect of the dispersion degree on the cellular structure of the different foams was found. The effects on the cellular structure obtained by using different types of sepiolites, different contents of sepiolites and different extrusion conditions have been analyzed. The foams produced with the formulations containing O-QASEP present the lowest cell size and the most homogeneous cellular structures.  相似文献   

9.
To obtain cellular with small cell diameter, to control cell structure and to improve impact strength of foaming materials, the quick-heating method was applied for foaming polystyrene (PS) using supercritical CO2 (Sc-CO2) as physical blowing agent. Then, changes of cell structure and impact strength in microcellular foamed PS materials under constrained conditions were studied. The effects of foaming processing parameters, such as foaming temperature, saturation pressure and foaming time on the cell structure and impact strength of foamed PS in the constrained conditions were studied. The results showed that the Sc-CO2 solubility and nucleation density in the constrained conditions were not influenced compared with those under free foaming conditions. However, cells in constrained foaming process are mostly circular and independent with thick cell walls; the phenomenon of cell coalescence and collapse was effectively eliminated under constrained conditions. In addition, cell diameters in constrained foaming process decrease with increase in foaming temperature and increase with increase in the foaming time. Compared with that in free foaming conditions, the cell growth was restrained dramatically under constrained conditions which resulted in smaller cell diameter. Moreover, higher impact strength could be obtained for foamed PS as foaming time was prolonged, foaming temperature was increased or saturation pressure was enhanced.  相似文献   

10.
Intercalated and exfoliated polystyrene/nano‐clay composites were prepared by mechanical blending and in situ polymerization respectively. The composites were then foamed by using CO2 as the foaming agent in an extrusion foaming process. The resulting foam structure is compared with that of pure polystyrene and polystyrene/talc composite. At a screw rotation speed of 10 rpm and a die temperature of 200°C, the addition of a small amount (i.e., 5 wt%) of intercalated nano‐clay greatly reduces cell size from 25.3 to 11.1 μm and increases cell density from 2.7 × 107 to 2.8 × 108 cells/cm3. Once exfoliated, the nanocomposite exhibits the highest cell density (1.5 × 109 cells/cm3) and smallest cell size (4.9 μm) at the same particle concentration. Compared with polystyrene foams, the nanocomposite foams exhibit higher tensile modulus, improved fire retardance, and better barrier property. Combining nanocomposites and the extrusion foaming process provides a new technique for the design and control of cell structure in microcellular foams.  相似文献   

11.
A poly(methyl methacrylate) (PMMA) and nanoclay composite was dispersed into polystyrene (PS) using a twin‐screw extruder. The mixture was then batch foamed with supercritical CO2. It was found that the cell density of foams based on the blend is higher than that based on the weight average of the two pure polymer components at the same foaming conditions. The cell size decreases and the cell density increases with the increase of the PMMA domain size. One explanation is that the large PMMA domains serve as a CO2 reservoir and the nucleation in the PS phase is enhanced by the diffusion of CO2 from the PMMA phase to the PS phase. Very small PMMA domains cannot function as a CO2 reservoir, and so they are not able to facilitate the nucleation. A much higher cell density and smaller cell size were observed when nanoclay was located at the interface of the PMMA and the PS domains, serving as the heterogeneous nucleating agents. POLYM. ENG. SCI., 47:103–111, 2007. © 2007 Society of Plastics Engineers  相似文献   

12.
The potential of using dispersive domains in a polymer blend as a bubble nucleating agent was investigated by exploiting its high dispersibility in a matrix polymer in the molten state and its immiscibility in the solid state. In this experiments, polypropylene (PP) was used as the nucleating agent in polystyrene (PS) and poly(methyl methacrylate) (PMMA) foams at the weight fraction of 10, 20, and 30 wt %. PP creates highly dispersed domains in PS and PMMA matrices during the extrusion processing. The high diffusivity of the physical foaming agent, i.e., CO2 in PP, and the high interfacial tension of PP with PS and PMMA could be beneficial for providing preferential bubble nucleation sites. The experimental results of the pressure quench solid‐state foaming of PS/PP and PMMA/PP blends verified that the dispersed PP could successfully increase the cell density over 106 cells/cm3 for PS/PP and 107 cells/cm3 for PMMA/PP blend and reduce the cell size to 24 μm for PS/PP and 9 μm for PMMA/PP blends foams. The higher interfacial tension between PP and the matrix polymer created a unique cell morphology where dispersed PP particles were trapped inside cells in the foam. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
A study on the extrusion of polystyrene was carried out using supercritical carbon dioxide (scCO2) as foaming agent. scCO2 modifies the rheological properties of the material in the barrel of the extruder and acts as a blowing agent during the relaxation at the passage through the die. For experiments, a single-screw extruder was modified to be able to inject scCO2 within the extruded material. The effect of operating parameters on material porosity was studied. Samples were characterized by using water-pycnometry, mercury-porosimetry and scanning electron microscopy. Polystyrene with expansion rate about 15–25% was manufactured. A rapid cooling just downstream the die is important to solidify the structure. The die temperature allows the control of the porosity structure. CO2 concentration shows no significant influence.  相似文献   

14.
In this work, polystyrene (PS)/functionalized graphene nanocomposite foams were prepared using supercritical carbon dioxide. Thermally reduced graphene oxide (TRG) and graphene oxide (GO) were incorporated into the PS. Subsequently, the nanocomposites were foamed with supercritical CO2. The morphology and properties of the nanocomposites and the nucleation efficiency of functionalized graphene in foaming PS are discussed. Compared with GO, TRG exhibited a higher nucleation efficiency and more effective cell expansion inhibition thanks to its larger surface area and better exfoliated structure. It is suggested that the factors that have a significant influence on the nucleation efficiency of TRG and GO originate from the differences in surface properties and chemical structure. Furthermore, PS/TRG nanocomposites and their nanocomposite foams also possess good electrical properties which enable them to be used as lightweight functional materials.© 2012 Society of Chemical Industry  相似文献   

15.
The effects of dissolved supercritical carbon dioxide on the viscosity and morphological properties were investigated for polyethylene/polystyrene blends in a twin-screw extruder. The viscosities of the blend/CO2 solutions were measured using a wedge die mounted on the extruder. A considerable reduction of viscosity was found when CO2 was dissolved in the blend. It was observed that the dissolution of CO2 into PE/PS blends, regardless of the CO2 content used, led to decreased shear thinning behavior resulting in an increase of the power law index from 0.29 to 0.34. The cell structures of foamed PE/PS blends showed a typical dependence of pressure and CO2 concentration, with higher operating pressures and CO2 content leading to a smaller cell size. Also, it was noted that the size of the dispersed PS phase in the PE/PS phase blends decreased by increasing the CO2 concentration, and that the dispersed PS phase domains were highly elongated in the direction normal to the cell radius.  相似文献   

16.
A study on the extrusion of microcellular polystyrene foams at different foaming temperatures was carried out using CO2 as the foaming agent. The contraction flow in the extrusion die was simulated with FLUENT computational fluid dynamics code at two temperatures (150°C and 175°C) to predict pressure and temperature profiles in the die. The location of nucleation onset was determined based on the pressure profile and equilibrium solubility. The relative importance of pressure and temperature in determining the nucleation rate was compared using calculations based on classical homogeneous nucleation theory. Experimentally, the effects of die temperature (i.e., the foaming temperature) on the pressure profile in the die, cell size, cell density, and cell morphology were investigated at different screw rotation speeds (10 ~ 30 rpm). Experimental results were compared with simulations to gain insight into the foaming process. Although the foaming temperature was found to be less significant than the pressure drop or the pressure drop rate in deciding the cell size and cell density, it affects the cell morphology dramatically. Open and closed cell structures can be generated by changing the foaming temperature. Microcellular foams of PS (with cell sizes smaller than 10 μm and cell densities greater than 10 cells/cm3) are created experimentally when the die temperature is 160°C, the pressure drop through the die is greater than 16 MPa, and the pressure drop rate is higher than 109 Pa/sec.  相似文献   

17.
利用超临界二氧化碳挤出发泡法,研究了单硬脂酸甘油脂(GMS)母粒的添加量对聚苯乙烯(PS)发泡性能的影响。采用毛细管流变仪研究了GMS添加量对PS/GMS体系的流变特性的影响,观察并测试了发泡材料的微观泡孔结构。研究结果表明,GMS的添加会降低树脂的黏度。母粒中含有的多组分GMS和少组分乙烯-醋酸乙烯(EVA)共同影响制品的表观密度、平均泡孔直径和泡孔密度等参数。在GMS添加量为1.05%,EVA添加量为0.45%时,制品的平均泡孔直径最小,泡孔密度最大。  相似文献   

18.
It is well known that supercritical carbon dioxide (sc-CO2) is soluble in molten polymers and acts as a plasticizer. The dissolution of sc-CO2 leads to a decrease in the viscosity of the liquid polymer, the melting point and the glass transition temperature. These properties have been used in several particle generation processes such as PGSS (particles from gas saturated solutions).It is therefore highly likely that extrusion processes would benefit from the use of sc-CO2 since the rationale of the extrusion processes is to formulate, texture and shape molten polymers by forcing them through a die. Combining these two technologies, extrusion and supercritical fluids, could open up new applications in extrusion.The main advantage of introducing sc-CO2 in the barrel of an extruder is its function as a plasticizer, which allows the processing of molecules which would otherwise be too fragile to withstand the mechanical stresses and the operating temperatures of a standard extrusion process. In addition, the dissolved CO2 acts as a foaming agent during expansion through the die. It is therefore possible to control pore generation and growth by controlling the operating conditions.This review focuses on experimental work carried out using continuous extrusion. A continuous process is more economically favourable than batch foaming processes because it is easier to control, has a higher throughput and is very versatile in the properties and shapes of the products obtained.The coupling of extrusion and supercritical CO2 technologies has already broadened the range of application of extrusion processes. The first applications were developed for the agro-food industry 20 years ago. However, most thermoplastics could potentially be submitted to sc-CO2-assisted extrusion, opening new challenging opportunities, particularly in the field of pharmaceutical applications.This coupled technology is however still very new and further developments of both experimental and modelling studies will be necessary to gain better theoretical understanding and technical expertise prior to industrial use, especially in the pharmaceutical field.  相似文献   

19.
The miscibility evolution of polycarbonate/polystyrene (PC/PS) blends during the compounding process in three blending methods of industrial relevance, namely melt blending, remelt blending in a twin‐screw extruder and third melt blending in an injection molding machine, was investigated by measuring their glass transition temperatures (Tg) and their specific heat increment (ΔCp). Differential scanning calorimetry (DSC) was used to examine nine blend compositions. Shifts in glass transition temperature (Tg) of the two phases in melt‐mixed PC/PS blends suggest partial miscibility of one polymer in the other. The observed solubility strongly depends on blend composition and blending method. The Tg measurements showed maximum mutual solubility around 50/50 composition. The miscibility of PC/PS blended after the third stage (melt injection molding) was higher than that after the first stages (melt extrusion) and the second stages (remelt extrusion).  相似文献   

20.
In foam extrusion, process parameters, material properties, and the blowing agent have an influence on the resulting foam properties. For safety and environmental reasons, carbon dioxide (CO2) has gained importance as physical blowing agent for the production of low-density polystyrene foam sheets. The sole use of CO2 often leads to corrugation, open cell structures, or surface defects on the foam sheet. As an alternative, blowing agent mixtures based on CO2 and organic solvents such as ethanol, acetone, or ethyl acetate can be used, changing solubility and flow behavior of the gas-loaded melt. A model approach for describing foam extrusion of polystyrene with various blowing agent mixtures in an annular gap die is developed. Part I of the paper describes the modeling of material properties. In Part II, the process model including nucleation and cell formation in the flow field is developed and applied to a foam sheet extrusion process. Based on the material model, melt flow and formation of cells are modeled by a step-wise calculation along the die, showing good agreement with experimental data. Dimensionless numbers are used to describe the foaming process and a parameter study based on these dimensionless numbers is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号