首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
Secretory capacity of bovine mammary glands is enabled by a high number of secretory cells and their ability to use a range of metabolites to produce milk components. We isolated RNA from milk fat to measure expression of genes involved in energy-yielding pathways and the unfolded protein response in mammary glands of lactating cows given supplemental energy from protein (PT) and fat (FT) tested in a 2 × 2 factorial arrangement. We hypothesized that PT and FT would affect expression of genes in the branched-chain AA catabolic pathway and tricarboxylic acid (TCA) cycle based on the different energy types (aminogenic versus lipogenic) used to synthesize milk components. We also hypothesized that the response of genes related to endoplasmic reticulum (ER) homeostasis via the unfolded protein response would reflect the increase in milk production stimulated by PT and FT. Fifty-six multiparous Holstein-Friesian dairy cows were fed a basal total mixed ration (34% grass silage, 33% corn silage, 5% grass hay, and 28% concentrate on a dry matter basis) for a 28-d control period. Experimental rations were then fed for 28 d, consisting of (1) low protein, low fat (LP/LF); (2) high protein, low fat (HP/LF); (3) low protein, high fat (LP/HF); or (4) high protein and high fat (HP/HF). To obtain the high-protein (HP) and high-fat (HF) diets, intake of the basal ration was restricted and supplemented isoenergetically (net energy basis) with 2.0 kg/d rumen-protected protein (soybean + rapeseed, 50:50 mixture on dry matter basis) and 0.68 kg/d hydrogenated palm fatty acids on a dry matter basis. RNA from milk fat samples collected on d 27 of each period underwent real-time quantitative PCR. Energy from protein increased expression of BCAT1 (branched-chain amino acid transferase 1) mRNA, but only at the LF level, and tended to decrease expression of mRNA encoding the main subunit of the branched-chain keto-acid dehydrogenase complex. mRNA expression of malic enzyme, a proposed channeling route for AA though the TCA cycle, was decreased by PT, but only at the LF level. Expression of genes associated with de novo fatty acid synthesis was not affected by PT or FT. Energy from fat had no independent effect on genes related to ER homeostasis. At the LF level, PT activated XBP1 (X-box binding protein 1) mRNA. At the HF level, PT increased mRNA expression of the gene encoding GADD34 (growth arrest and DNA damage-inducible 34). These findings support our hypothesis that mammary cells use aminogenic and lipogenic precursors differently for milk component production when dietary intervention alters AA and fatty acid supply. They also suggest that mammary cells respond to increased AA supply through mechanisms of ER homeostasis, dependent on the presence of FT.  相似文献   

2.
This study investigated the anti-proliferative and apoptotic effect of flavonoids isolated from Korean Citrus aurantium L. using A549 lung cancer cells. Flavonoids potently inhibited of A549 cells in a dose-dependent manner, whereas flavonoids had a weak inhibitory effect on proliferation of WI-38 cells. Flow cytometry and Western blot analysis showed that flavonoids induced cell cycle arrest at the G2/M checkpoint by controlling the proteins expression level of cyclin B1, cdc2, cdc25c and p21WAF1/CIP1. Also, flavonoids induced apoptosis through the regulation of the expression of caspases, cleaved PARP and Bax/Bcl-xL ratio. The activity of caspase-3 on A549 cells increased in a dose-dependent manner. These results clearly indicated that the anti-cancer effect of flavonoids on A549 cells follows multiple cellular pathways through G2/M arrest and the induction of apoptosis.  相似文献   

3.
Bax, a multidomain pro‐apoptotic Bcl‐2 protein, localizes to the endoplasmic reticulum (ER), where it regulates ER stress‐induced apoptosis. Adaptation to ER stress depends on the activation of an integrated signal transduction pathway known as the unfolded protein response (UPR). This study examined the death‐inducing activity of Bax and its ability to induce UPR signalling pathways in yeast. We observed that inhibition of global translation in yeast cells expressing Bax correlated with Bax‐induced cell death. Using a lacZ reporter containing several UPR cis‐activating regulatory elements, we also found that Bax directly activated the UPR. Furthermore, this correlated with the splicing of HAC1 mRNA, a gene involved in UPR activation. Bax induced expression of representative UPR target genes such as KAR2, DER1 and GCN4. Finally, we found that Ire1p function is critical for Bax‐induced cell death. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
5.
6.
Mushrooms are a possible rich source of biologically active compounds with the potential for drug discovery. The aim of this work was to gain further insight into the cytotoxicity mechanism of action of Clitocybe alexandri ethanolic extract against a lung cancer cell line (NCI-H460 cells). The effects on cell cycle profile and levels of apoptosis were evaluated by flow cytometry, and the effect on the expression levels of proteins related to cellular apoptosis was also investigated by Western blot. The extract was characterised regarding its phenolic composition by HPLC-DAD, and the identified compounds were studied regarding their growth inhibitory activity, by sulforhodamine B (SRB) assay. The effect of individual or combined compounds on viable cell number was also evaluated using the Trypan blue exclusion assay. It was observed that the C. alexandri extract induced an S-phase cell cycle arrest and increased the percentage of apoptotic cells. In addition, treatment with the GI50 concentration (concentration that was able to cause 50% of cell growth inhibition; 24.8 μg/ml) for 48 h caused an increase in the levels of wt. p53, cleaved caspase-3 and cleaved poly (ADP-ribose) polymerase (PARP). The main components identified in this extract were protocatechuic, p-hydroxybenzoic and cinnamic acids. Cinnamic acid was found to be the most potent compound regarding cell growth inhibition. Nevertheless, it was verified that the concomitant use of the individual compounds provided the strongest decrease in viable cell number. Overall, evidence was found for alterations in cell cycle and apoptosis, involving p53 and caspase-3. Furthermore, our data suggests that the phenolic acids identified in the extract are at least partially responsible for the cytotoxicity induced by this mushroom extract.  相似文献   

7.
Stellera chamaejasme has been used as a therapeutic plant for treatment of various inflammatory diseases and solid tumors. Our study was particularly interested in the differentiation inducing activity of the aerial parts of S.chamaejasme using human chronic leukemia cell line K562. The ethanol extract has been shown to be highly cytotoxic against K562 cells at > 0.008% (v/v) doses. Cell cycle arrest at G0/G1 phase, not detectable DNA fragmentation as well as positive staining with acridine orange and expression of beclin-1 protein in the treated cells led as to detect autophagic cell death during the plant extract treatment of K562 cells. Moreover, differentiation marker CD11b was also expressed in the treated cells.  相似文献   

8.
This study is the first to investigate the anticancer effect of isoliquiritigenin (ISL) in human cervical carcinoma HeLa cells. The results reveal that ISL inhibits HeLa cells by blocking cell cycle progression in the G2/M phase and inducing apoptosis. Blockade of cell cycle is associated with increased activation of ataxia telangiectasia‐mutated (ATM). Activation of ATM by ISL phosphorylated p53 at Serine15, resulting in increased stability of p53 by decreasing p53 and murine double minute‐2 (MDM2) interaction. In addition, ISL‐mediated G2/M phase arrest was also associated with decreases in the amounts of cyclin B, cyclin A, cdc2, and cdc25C, and increases in the phosphorylation of Chk2, cdc25C, and cdc2. The specific ATM inhibitor caffeine significantly decreased ISL‐mediated G2/M arrest by inhibiting the phosphorylation of p53 (Serine15) and Chk2. ISL induced apoptotic cell death is associated with changes in the expression of Bax and Bak, decreasing levels of Bcl‐2 and Bcl‐XL, and subsequently triggering mitochondrial apoptotic pathway. In addition, pretreatment of cells with caspase‐9 inhibitor blocked ISL‐induced apoptosis, indicating that caspase‐9 activation is involved in ISL‐mediated HeLa cell apoptosis. These findings suggest that ISL may be a promising chemopreventive agent against human uterine cervical cancer.  相似文献   

9.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号