首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 4 毫秒
1.
Polypropylene (PP)/Multiwall carbon nanotubes (MWCNTs) nanocomposites were fabricated via melt compounding that utilizes a corotating twin‐screw extruder. Two commercially available MWCNTs, Baytubes C150P and C70P, were incorporated into PP matrix at concentration of 3 wt %. The nanocomposites samples were analyzed using scanning electron microscopy, dynamic mechanical analysis (DMA), nanoindentation test, and picoammeter. It was found that both MWCNTs types were well distributed and dispersed in the PP matrix and no agglomeration of MWCNTs was observed. The DMA analysis results showed that the incorporation of MWCNTs enhanced the storage modulus and thermal stability of the PP matrix. Whereas, nanoindentation creep results showed that the creep rate and displacement of the PP/MWCNTs nanocomposites was lower than the neat PP, in which C70P < C150P < PP. The reduction of creep rate and creep displacement was associated to the improvement of creep resistance. There were also improvements on hardness and stiffness of the nanocomposites. Additionally, the electrical resistivity of the neat PP decreased with the incorporation of MWCNTs. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45293.  相似文献   

2.
BACKGROUND: The development of carbon nanotube‐reinforced composites has been impeded by the difficult dispersion of the nanotubes in polymers and the weak interaction between the nanofiller and matrices. Efficient dispersion of carbon nanotubes is essential for the formation of a functional nanotube network in a composite matrix. RESULTS: Multiwalled carbon nanotubes (MWNTs) were incorporated into a polyimide matrix to produce MWNT/polyimide nanocomposites. To disperse well the MWNTs in the matrix and thus improve the interfacial adhesion between the nanotubes and the polymer, ‘branches’ were grafted onto the surface of the nanotubes by reacting octadecyl isocyanate with carboxylated MWNTs. The functionalized MWNTs were suspended in a precursor solution, and the dispersion was cast, followed by drying and imidization to obtain MWNT/polyimide nanocomposites. CONCLUSION: The functionalized MWNTs appear as a homogeneous dispersion in the polymer matrix. The thermal stability and the mechanical properties are greatly improved, which is attributed to the strong interactions between the functionalized MWNTs and the polyimide matrix. Copyright © 2009 Society of Chemical Industry  相似文献   

3.
A spray drying approach has been used to prepare polyurethane/multiwalled carbon nanotube (PU/MWCNT) composites. By using this method, the MWCNTs can be dispersed homogeneously in the PU matrix in an attempt to improve the mechanical properties of the nanocomposites. The morphology of the resulting PU/MWCNT composites was investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). SEM and TEM observations illustrate that the MWCNTs are dispersed finely and uniformly in the PU matrix. X‐ray diffraction results indicate that the microphase separation structure of the PU is slightly affected by the presence of the MWCNTs. The mechanical properties such as tensile strength, tensile modulus, elongation at break, and hardness of the nanocomposites were studied. The electrical and the thermal conductivity of the nanocomposites were also evaluated. The results show that both the electrical and the thermal conductivity increase with the increase of MWCNT loading. In addition, the percolation threshold value of the PU composites is significantly reduced to about 5 wt % because of the high aspect ratio of carbon nanotubes and exclusive effect of latex particles of PU emulsion in dispersion. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

4.
In this study, polypropylene/carbon nanotube nanocomposites were prepared via in situ polymerization using a bi‐supported Ziegler ? Natta catalytic system. In this system, magnesium ethoxide and multiwall carbon nanotubes (MWCNTs) are jointly used as catalyst supports. SEM images reveal the distribution and quite good dispersion of MWCNTs throughout the polypropylene (PP) matrix. The thermal properties of the samples were examined using DSC and TGA tests. The results show that the crystallization temperature of the nanocomposites significantly increases while the melting point is not markedly affected. In addition, the thermal stability is improved. The melt rheological properties of PP/MWCNT nanocomposites in the linear and nonlinear viscoelastic response regions were studied. An increment of the complex viscosity (η*), storage modulus (G′) and loss modulus (G′′) and a decrement of the loss factor (tan δ) compared with neat PP are observed. Steady shear flow experiments show an increase in shear viscosity with increasing the MWCNT content. © 2013 Society of Chemical Industry  相似文献   

5.
In this work, electrical conductivity and thermo‐mechanical properties have been measured for carbon nanotube reinforced epoxy matrix composites. These nanocomposites consisted of two types of nanofillers, single walled carbon nanotubes (SW‐CNT) and electrical grade carbon nanotubes (XD‐CNT). The influence of the type of nanotubes and their corresponding loading weight fraction on the microstructure and the resulting electrical and mechanical properties of the nanocomposites have been investigated. The electrical conductivity of the nanocomposites showed a significantly high, about seven orders of magnitude, improvement at very low loading weight fractions of nanotubes in both types of nanocomposites. The percolation threshold in nanocomposites with SW‐CNT fillers was found to be around 0.015 wt % and that with XD‐CNT fillers around 0.0225 wt %. Transmission optical microscopy of the nanocomposites revealed some differences in the microstructure of the two types of nanocomposites which can be related to the variation in the percolation thresholds of these nanocomposites. The mechanical properties (storage modulus and loss modulus) and the glass transition temperature have not been compromised with the addition of fillers compared with significant enhancement of electrical properties. The main significance of these results is that XD‐CNTs can be used as a cost effective nanofiller for electrical applications of epoxy based nanocomposites at a fraction of SW‐CNT cost. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

6.
The thermoplastic polyurethane/multiwalled carbon nanotube (TPU/CNT) nanocomposites with high conductivity and low percolation threshold value were prepared by melting blending and annealing treatment. The effect of annealing process on the microphase structure and the properties of TPU/CNT nanocomposites was studied. It has been shown that CNT flocculation can occur in TPU/CNT nanocomposites during the annealing process. At a critical CNT content, which defined the percolation threshold, CNTs could form conductivity network. The conductive percolation threshold value of TPU/CNT nanocomposites was decreased from 10 to 4% after annealing process, and the conductivity of TPU/CNT nanocomposites with 10 vol % of CNT could reach 1.1 S/m after an annealing time of 1 h. The significant enhancement of electrical conductivity was influenced by the annealing time and the content of CNTs. The formation of CNT networks was also verified by dynamic viscoelastic characterization. The results of X‐ray diffraction and differential scanning calorimetry indicated that annealing process reinforced the microphase separation of the nanocomposites. Mechanical properties test showed that the annealing treatment was in favor of improving the mechanical properties; however, further increase in the annealing time has negative effect on the mechanical properties. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

7.
Nanocomposites of cyclic olefin copolymer (COC) and two types of multiwalled carbon nanotubes (MWCNTs) with different aspect ratios were prepared. The morphology, thermal behavior, and electrical conductivity of the nanocomposites were investigated by scanning electron microscopy, differential scanning calorimetry, thermal gravimetric analysis, and the DC conductivity measurement. It was found that the developed nanocomposite preparation method resulted in good nanotubes dispersion in the polymer matrix for both types of MWCNTs. No appreciable differences in glass transition temperatures were observed between the pure COC and nanocomposites. On the other hand, CNTs significantly improved the thermo‐oxidative stability of the COC. The nanocomposites showed significant delay in onset of degradation and the degradation temperature was ~ 40°C higher than that of the pure COC. The nanocomposites also showed substantially higher DC conductivity, which increased with the nanotube concentration and aspect ratio. An increase of DC electrical conductivity over 109 times can be achieved by the addition of 2 wt % CNTs. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

8.
This study investigated the correlation between the electrical conductivity and the micro and nanomorphology of multiwalled carbon nanotubes (MWCNTs)/epoxy nanocomposites with and without the inorganic fillers montmorillonite (MMT), sepiolite and calcium carbonate (CaCO3). The nanocomposites were prepared by dispersing the MWCNT and fillers through ultrasonication directly in the resin or solvent. For nanocomposites without fillers, the compositions prepared with solvent demonstrated higher electrical conductivities, which correlate with a microscale morphology formed by networks of highly interconnected MWCNT agglomerates. The addition of MMT induced a deleterious effect on the electrical conductivity of the nanocomposites since this filler hinders the formation of MWCNT agglomerate networks. The effect of sepiolite on electrical conductivity is also negative, but in this case, nonmorphological effects are likely of greater importance. The addition of CaCO3 improved the electrical conductivity of the binary nanocomposites under specific conditions. For this filler, a synergic effect was achieved for the composition prepared with solvent, which resulted in an approximately sixfold increase in electrical conductivity relative to the nanocomposite without filler.  相似文献   

9.
The electrical properties in polymer/carbon nanotube (CNT) nanocomposites are governed not only by the degree of dispersion but also to a greater extent on the aspect ratio of the CNTs in the final composites. Melt‐mixing of polymer and CNTs at high shear rate usually breaks the CNTS that lowers the aspect ratio of the nanotubes. Thus, homogeneous dispersion of CNTs while retaining the aspect ratio is a major challenge in melt‐mixing. Here, we demonstrate a novel method that involves melt‐blending of acrylonitrile‐butadiene‐styrene (ABS) and in situ polymerized polystyrene (PS)/multiwalled CNT (MWCNT) nanocomposites, to prepare electrically conducting ABS/MWCNT nanocomposites with very low CNT loading than reported. The rationale behind choosing PS/MWCNT as blending component was that ABS is reported to form miscible blend with the PS. Thus, (80/20 w/w) ABS/(PS/MWCNT) nanocomposites obtained by melt‐blending showed electrical conductivity value ≈1.27 × 10?6 S cm?1 at MWCNT loading close to 0.64 wt %, which is quite lower than previously reported value for ABS/MWCNT system prepared via solution blending. Scanning electron microscopy and differential scanning calorimetry analysis indicated the formation of homogenous and miscible blend of ABS and PS. The high temperature (100°C) storage modulus of ABS (1298 MPa) in the nanocomposites was increased to 1696 MPa in presence of 0.64 wt % of the MWCNT. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

10.
Development of aluminum nitride (AlN)‐single walled carbon nanotube (SWCNT) ceramic‐matrix composite containing 1‐6 vol% SWCNT by hot pressing has been reported in this article. The composites containing 6 vol% SWCNT are dense (~99% relative density) and show high dc electrical conductivity (200 Sm?1) and thermal conductivity (62 Wm?1K?1) at room temperature. SWCNTs contain mostly metallic variety tubes obtained by controlled processing of the pristine tubes before incorporation into the ceramic matrix. Raman spectroscopy and field emission scanning electron microscopy (FESEM) of the fracture surface of the samples show the excellent survivability of the SWCNTs even after high‐temperature hot pressing. The results indicate the possibility of preparation of AlN nanocomposite for use in plasma devices and electromagnetic shielding.  相似文献   

11.
Multiwalled carbon nanotube/rigid‐rod polyimide composite films have been prepared by casting a solution of precursor polymer (polyamide acid) containing multiwalled carbon nanotubes (MWNTs) into thin films, followed by a thermal imidization treatment. The composite films were characterized by FTIR, TEM, DSC, TGA and TMA, and the film tensile properties were also examined. The presence of 1.0% MWNTs in the polymer matrix led to more than twofold increase in tensile strength of the rigid‐rod polyimide composite films and improved thermal stability, but reduced in thermal deformation. However, the tensile property did not show further increase when the film contained higher composition of MWNTs. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

12.
Sulfonated poly(4,4′‐diphenylether‐1,3,4‐oxadiazole) (POD) composites have been successfully prepared through solution polycondensation of 4,4′‐diphenylether dicarboxylic acid and hydrazine sulfate. The reactions were performed in the presence of various types of pristine carbon nanotubes, i.e. single‐, double‐ and multi‐walled carbon nanotubes, using mild poly(phosphoric acid) as a condensing agent. The POD composites with high molecular weight (of the order of 105 g mol?1) were highly soluble in polar aprotic solvents and thermally stable at temperatures as high as 475 °C. The synthesis method used guaranteed an improved interaction between filler and matrix, thus allowing an enhanced load transfer. The overall performance of the composites was enhanced due to a synergistic reinforcement effect. The nanocomposites exhibited an increase of +33% in storage modulus, +56% in tensile strength and +245% in tensile energy to break. Copyright © 2010 Society of Chemical Industry  相似文献   

13.
Cellulose acetate (CA)‐based nanocomposites with various contents of neat multiwalled carbon nanotube (MWCNT) or acid‐treated one (MWCNT‐COOH) are prepared via melt‐compounding method and investigated their morphology, thermal stability, mechanical, and electrical properties. SEM microphotographs reveal that MWCNT‐COOHs are dispersed uniformly in the CA matrix, compared with neat MWCNTs. FTIR spectra support that there exists a specific interaction between carboxyl groups of MWCNT‐COOHs and ester groups of CA, indicating good interfacial adhesion between MWCNT‐COOHs and CA matrix. Accordingly, thermal stability and dynamic mechanical properties of CA/MWCNT‐COOH nanocomposites were higher than those of CA/MWCNT composites. On the contrary, electrical volume resistivities of CA/MWCNT‐COOH nanocomposites are found to be somewhat higher than those of CA/MWCNT composites, which is because of the deterioration of graphene structures for MWCNT‐COOHs and the good dispersion of MWCNT‐COOHs in the CA matrix. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

14.
In this study, we prepared nanocomposites comprising multiwalled carbon nanotubes (MWCNTs) and polybenzoxazine (PBZ). The MWCNTs were purified through microwave digestion to remove most of the amorphous carbon and metal impurities. After purification, MWCNTs were treated with H2SO4/HNO3 (3 : 1) to introduce hydroxyl and carboxyl groups onto their surfaces. Raman spectroscopy revealed the percentage of nanotube content improved after prolonged microwave treatment, as evidenced by the decrease in the ratio of the D (1328 cm?1) and G (1583 cm?1) bands. For the untreated MWCNTs, the ID/IG ratio was 0.56. After microwave treatment for 40 min, the value decreased to 0.29, indicating that the percentage of nanotube content improved. Dynamic mechanical analyses (DMAs) revealed that the storage moduli and the Tgs of the MWCNTs/PBZ nanocomposites were higher than that of the pristine PBZ. This is due to the nanometer‐scale MWCNTs restricting the motion of the macromolecular chains in the nanocomposites. Transmission electron microscopy (TEM) image revealed that the MWCNTs were well dispersed within the PBZ matrix on the nanoscale when the MWCNT content was less than 2.0 phr. The coefficient of thermal expansion (CTE) of the nanocomposites decreased on increasing the MWCNTs content. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
Nanocomposites of poly(vinylidene fluoride) (PVDF) and multi‐walled carbon nanotubes (MWCNTs) were prepared through melt blending in a batch mixer (torque rheometer equipped with a mixing chamber). The morphology, rheological behavior and electrical conductivity were investigated through transmission electron microscopy, dynamic oscillatory rheometry and the two‐probe method. The nanocomposite with 0.5 wt% MWCNT content presented a uniform dispersion through the PVDF matrix, whereas that with 1 wt% started to present a percolated network. For the nanocomposites with 2 and 5 wt% MWCNTs the formation of this nanotube network was clearly evident. The electrical percolation threshold at room temperature found for this system was about 1.2 wt% MWCNTs. The rheological percolation threshold fitted from viscosity was about 1 wt%, while the threshold fitted from storage modulus was 0.9 wt%. Thus fewer nanotubes are needed to approach the rheological percolation threshold than the electrical percolation threshold. Copyright © 2010 Society of Chemical Industry  相似文献   

16.
The polyimide (PI)/carbon nanotube (CNT) films including 3,3′,4,4′-biphenyl tetracarboxylic dianhydride (BPDA), p-phenylenediamine (p-PDA), and CNTs were prepared, which have prominent electromagnetic (EM) wave absorption performance. Experimental analyses of the mechanical properties, thermal stabilities, coefficient of thermal expansion (CTE), the glass transition temperature (Tg), and EM parameter revealed the beneficial effects of the CNTs on the resulting composite films. In particular, when the content of CNTs is 6 wt%, the film shows the highest EM wave absorption performance, which exhibits the effective absorption bandwidth of 2.72 GHz with the matching thickness of only 2.0 mm. These results indicate that PI-based films have a certain potential application in the area of EM wave-absorbing materials.  相似文献   

17.
Nanocomposites based on poly(styrene‐b‐ethylene‐ran‐butylene‐b‐styrene) (SEBS) and carbon nanotubes (CNTs) (SEBS/CNT) as well as SEBS grafted with maleic anhydride (SEBS‐MA)/CNT were successfully prepared for electromagnetic shielding applications. Both SEBS/CNT and SEBS‐MA/CNT nanocomposites were prepared by melt compounding and were post‐processed using two different techniques: tape extrusion and compression moulding. The different nanocomposites were characterized by Raman spectroscopy and rheological analysis. Their mechanical properties, electrical properties (10-2–105 Hz) and electromagnetic shielding effectiveness (8.2–12.4 GHz) were also evaluated. The results showed that the CNT loading amount, the presence of MA in the matrix and the shaping technique used strongly influence the final morphologies and properties of the nanocomposites. Whilst the nanocomposite containing 8 wt% CNTs prepared by compression moulding presented the highest electromagnetic shielding effectiveness (with a value of 56.73 dB, which corresponds to an attenuation of 99.9996% of the incident radiation), the nanocomposite containing 5 wt% CNTs prepared by tape extrusion presented the best balance between electromagnetic and mechanical properties and was a good candidate to be used as an efficient flexible electromagnetic interference shielding material. © 2018 Society of Chemical Industry  相似文献   

18.
In this paper, electrical and dielectric properties of multiwall carbon nanotubes (MWCNTs)/insulating polyaniline (PANI) composites were studied. A mixture of MWCNTs and insulating polyaniline was dispersed in an ethanol solution by ultrasonic process, subsequently dried, and was hot-pressed at 200 °C under 30 MPa. Electrical and dielectric properties of the composites were measured. The experimental results show that the dc conductivities of the composites exhibit a typical percolation behavior with a low percolation threshold of 5.85 wt.% MWCNTs content. The dielectric constant of the composites increases remarkably with the increasing MWCNTs concentration, when the MWCNTs concentration was close to percolation threshold. This may be attributed to the critical behavior of the dielectric constant near the percolation threshold as well as to the polarization effects between the clusters inside the composites.  相似文献   

19.
Since their discovery at the beginning of the 1990s, carbon nanotubes (CNTs) have been the focus of considerable research by both academia and industry due to their remarkable and unique electronic and mechanical properties. Among numerous potential applications of CNTs, their use as reinforcing materials for polymers has recently received considerable attention since their exceptional mechanical properties, combined with their low density, offer tremendous opportunities for the development of fundamentally new material systems. However, the key challenge remains to reach a high level of nanoparticle dissociation (i.e. to break down the cohesion of aggregated CNTs) as well as a fine dispersion upon melt blending within the selected matrices. Therefore, this contribution aims at reviewing the exceptional efficiency of CNT coating by a thin layer of polymer as obtained by an in situ polymerization process catalysed directly from the nanofiller surface, known as the ‘polymerization‐filling technique’. This process allows for complete destructuring of the native filler aggregates. Interestingly enough, such surface‐coated carbon nanotubes can be added as ‘masterbatch’ in commercial polymeric matrices leading to the production of polymer nanocomposites displaying much better thermomechanical, flame retardant and electrical conductive properties even at very low filler loading. Copyright © 2007 Society of Chemical Industry  相似文献   

20.
The preparation of thermoplastic nanocomposites of waterborne polyurethane (WBPU) and multiwall carbon nanotubes (MWCNTs) via an in situ polymerization approach is presented. The effects of the presence and content of MWCNTs on the morphology and thermal, mechanical and electrical properties of the nanocomposites were investigated. Carbon nanotubes were modified with amide groups in order to enhance their chemical affinity towards WBPU. Thermogravimetric studies show enhanced thermal stability of the nanocomposites. Scanning and transmission electronic microscopy images prove that functionalized carbon nanotubes can be effectively dispersed in WBPU matrix. Mechanical properties reveal that Young's modulus and tensile strength tend to increase when appropriate amounts of MWCNTs are loaded due to the reinforcing effect of the functionalized carbon nanotubes. Thermal properties show an increase in the glass transition temperature and storage modulus with an increase in MWCNT content. X‐ray diffraction reveals better crystallization of the WBPU in the presence of MWCNTs. The WBPU/MWCNT nanocomposite film containing 1 wt% of MWCNTs exhibits a conductivity nearly five orders of magnitude higher than that of WBPU film. © 2017 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号