首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Successful decolorisation of real textile wastewater was achieved by means of the advanced Fenton process in conjunction with ultrasound technology. A synergy factor of 6.9 for this combined method was determined. The decolorisation followed zero‐order kinetics, and the rate increased with increasing zero‐valent iron dose and decreasing pH and hydrogen peroxide concentration. The optimum conditions for an American Dye Manufacturers Institute decolorisation value of 1638 ADMI was found to be a pH of 3.0, an ultrasound frequency of 47 kHz, a zero‐valent iron dose of 1.0 g l?1, and a hydrogen peroxide concentration of 1.03 × 10?2 m . Under these conditions, the estimated operating cost to decolorise 96% true colour was estimated to be $US 4.51 m?3. The study demonstrated that the given combined method could be applied to decolorise textile wastewaters.  相似文献   

2.
The present study demonstrated the applicability of the electrocoagulation method for the removal of reactive dye, Remazol Red 3B, in a batch study. Iron electrode material was used as a sacrificial electrode in monopolar parallel mode in this study. The effects of the initial pH, current density, conductivity, initial concentration of dye and electrolysis time on the removal of Remazol Red 3B were investigated to determine optimum operating conditions. High decolorisation efficiency (>99%) for Remazol Red 3B dye solution was obtained with optimal value of process parameters, such as 15 mA cm?2 of current density, 10 min of electrolysis time, pH 6 and 500 mg l?1 dye concentration. The energy consumption, electrode consumption and operating costs under optimum operating conditions were calculated as 3.3 kW h kg dye?1, 1.2 kg Fe kg dye?1 and 0.6 € m?3, respectively.  相似文献   

3.
《分离科学与技术》2012,47(2):295-302
The removal of endocrine disrupting chemical (BPA; Bisphenol–A) from aqueous solution was experimentally investigated by electrocoagulation process. The effects of different combinations of aluminum (Al) and iron (Fe) electrode pair, supporting electrolyte type, supporting electrolyte concentration, initial pH and applied current density and initial BPA concentration on the Chemical Oxygen Demand (COD), and energy consumption performances were critically evaluated. The experiment results indicate that Al–Al electrode pair is the most efficient choice of the four electrode pairs. The COD removal efficiency was increased when NaCl was used as the supporting electrolyte instead of Na2SO4 and NaNO3. The optimum supporting electrolyte type and its concentration, initial pH, applied current density and treatment time were found to be NaCl, 0.05 M, pH 7.0, 12 mA cm?2 and 40 min, respectively. Energy consumption was found to decrease with increase of NaCl concentration while it increases with increasing applied current density. The initial and treated sample was characterized by UV–vis spectroscopy to confirm the treatment efficiency. The sludge formed during electrocoagulation was characterized by XRD and SEM/EDAX analysis.  相似文献   

4.
BACKGROUND: Electrochemical advanced oxidation treatment using boron‐doped diamond (BDD) electrodes is a promising technology to treat small amounts of toxic and biorefractory pollutants in water. This process has been tested on the degradation of naproxen, a common pollutant drug present in surface waters. To optimize the process a series of experiments have been designed to study the interaction between four variables: pH (over the range 5–11); current (0–320 mA cm?2); supporting Na2SO4 electrolyte concentration (0–0.375 mol L?1); and solution flow rate (Qv) between 3.64 and 10.8 cm3 min?1. RESULTS: Among these variables the influence of current was the greatest, the second was the salt concentration, the third flow rate, and the fourth pH. An ANOVA test reported significance for seven of the fourteen variables involved and the degradation of naproxen was optimized using response surface methodology. CONCLUSIONS: Optimum conditions for naproxen removal (100%) were found to be pH = 10.70, Qv = 4.10 cm3 min?1, current density = 194 mA cm?2 using a supporting electrolyte concentration of 0.392 mol L?1. Copyright © 2010 Society of Chemical Industry  相似文献   

5.
In the present study, Fenton and sono‐Fenton processes were applied to the oxidative decolorisation of synthetic textile wastewater including CI Reactive Orange 127 and polyvinyl alcohol. Process optimisation [pH, ferrous ion (Fe2+) and hydrogen peroxide (H2O2)], kinetic studies and their comparison were carried out for both of the processes. The sono‐Fenton process was performed by indirect sonication in an ultrasonic water bath, which was operated at a fixed 35‐kHz frequency and 80 W power. The optimum conditions were determined as [Fe2+] = 20 mg l?1, [H2O2] = 15 mg l?1 and pH = 3 for the Fenton process and [Fe2+] = 25 mg l?1, [H2O2] = 5 mg l?1 and pH = 3 for the sono‐Fenton process. The colour removals were 89.9% and 91.8% by the Fenton and sono‐Fenton processes, respectively. The highest decolorisation was achieved by the sono‐Fenton process because of the production of some oxidising agents as a result of sonication. Consequently, ultrasonic irradiation in the sono‐Fenton process slightly increased the colour removal to 91.8%, while decreasing the hydrogen peroxide dosage to one‐third of that of the Fenton process.  相似文献   

6.
The ozone decomposition reaction is analyzed in a homogeneous reactor through in-situ measurement of the ozone depletion. The experiments were carried out at pHs between 1 to 11 in H2PO4?/HPO42– buffers at constant ionic strength (0.1 M) and between 5 and 35 °C. A kinetic model for ozone decomposition is proposed considering the existence of two chemical subsystems, one accounting for direct ozone decomposition leading to hydrogen peroxide and the second one accounting for the reaction between the hydrogen peroxide with the ozone to give different radical species. The model explains the apparent reaction order respect of the ozone for the entire pH interval. The decomposition kinetics at pH 4.5, 6.1, and 9.0 is analyzed at different ionic strength and the results suggest that the phosphate ions do not act as a hydroxyl radical scavenger in the ozone decomposition mechanism.  相似文献   

7.
Several advanced oxidation processes for the destruction of cyanide contained in waste waters from thermoelectric power stations of combined‐cycle were studied. Thus, oxidation processes involving ozonation at basic pH, ozone/hydrogen peroxide, ozone/ultraviolet radiation and ozone/hydrogen peroxide/ultraviolet radiation have been carried out in a semi‐batch reactor. All these methods showed that total cyanide can be successfully degraded but with different reaction rates, and the decrease in the total cyanide concentration can be described by pseudo‐first order kinetics. The influence of pH and initial concentration of hydrogen peroxide was studied to find the optimal conditions of the oxidation process. Experimental results of the single ozone treatment indicated that total cyanide is destroyed more rapidly at higher pH (12), while ozonation combined with H2O2 and/or UV is faster at pH 9.5. The optimum concentration of H2O2 was 20.58 × 10?2 M because an excess of peroxide decreases the reaction rate, acting as a radical scavenger. The total cyanide degradation rate in the O3/H2O2(20.58 × 10?2 M ) treatment was the highest among all the combinations studied. However, COD reduction, in the processes using UV radiation such as O3/UV or O3/H2O2/UV was about 75%, while in the processes with H2O2 and/or O3/H2O2 was lower than 57% and was insignificant, when using ozone alone. Copyright © 2003 Society of Chemical Industry  相似文献   

8.
Ruthenium-tin binary oxides [(Ru+Sn)O2] were coated on titanium substrates by thermal decomposition. The surface morphologies and elemental analyses of these electrodes were examined by means of scanning electron microscopy. The electrochemical behaviours were characterized by cyclic voltammetry and linear-scan voltammetry (LSV) methods. The effects of electrolysis condition for the current efficiency (CE) of hypochlorite production on binary (Ru+Sn)O2 electrodes and the treatment of a high salt-containing dye wastewater using this hypochlorite were also investigated. The highest CE for hypochlorite production exists on an RS3 (40 to 80 mol% Sn in coating solution) electrode. The major factors influencing CE for hypochlorite production are the electrolyte flow rate, current density, and chloride (Cl-) concentration. Major factors affecting energy yield are current density, Cl- concentration, and electrode distance. For low current density (300 mA.cm?2), high Cl- concentration (1 mol.L?1), and 0.45 cm electrode separation, a high specific energy is obtained. The RS3 electrode exhibits the best removal of organics and chromophor groups in the dye wastewater. On this electrode, better removal of organics and chromophor groups is obtained at 300 mA.cm?2. The colour of black-red dye wastewater becomes light yellow when a charge of 792 A·min was passed, while the chemical oxygen demand (COD) of this wastewater is decreased from 10500 mg.L?1 to 1250 mg.L?1.  相似文献   

9.
In this work, a heterogeneous catalytic wet peroxide process combining activated carbon (AC) and hydrogen peroxide (H2O2)/ultraviolet radiation was applied for the aqueous‐phase removal of phenol. The influence of the pH and peroxide concentration were determined according to a factorial plan. The kinetic contribution of radical mechanisms () was estimated using a radical scavenger (tert‐butyl alcohol). The degradation kinetics was modelled by a global pseudo‐first‐order kinetic model based on the sum of the effects during the treatment process. The results showed that these two variables significantly affected the percentage removal. The peroxide concentration exerted a positive effect (i.e., as the H2O2 concentration increased, the percentage removal also increased). Additionally, as the pH value increased, the degradation accelerated, and the kinetic constant (khomogeneous) increased from 0.00938 min?1 to 0.02772 min?1. The results obtained in the presence of AC demonstrated the ability of AC to ameliorate the degradation of phenol; for example, was 45.69 % to 41.35 %.
  相似文献   

10.
《分离科学与技术》2012,47(7):1008-1018
The objective of the present study is to assess the efficiency of electro-coagulation treatment of pistachio processing industry wastewaters (PPIW) using an aluminum plate electrode. The effect of some of the parameters was examined on the removal of chemical oxygen demand (COD), total organic carbon (TOC), and total phenols (TP) removal efficiency. The treatment was carried out in a batch system. The influences of current density (from 1 to 6 mA cm?2), initial pH of wastewater (from 2 to 8), constant pH of wastewater (from 3 to 7), stirring speed (from 100 to 500 rpm), and supporting electrolyte concentration (from 10 to 50 mg L?1 NaCl) on removal efficiency were investigated to determine the best experimental conditions. The evaluation of the physico-chemical parameters during the treatment by electrocoagulation showed that the best removal efficiency was obtained under the conditions of 180 min electrolysis time, wastewater with constant pH of 6, and 6 – mA cm?2 current density. Under such experimental conditions, COD, TOC, and TP removal efficiency were found to be 60.1%, 50.2%, and 77.3%, respectively, while energy consumption was 39.6 kW-h m?3. The results of the study show that the electrocoagulation can be applied to PPIW pre-treatment.  相似文献   

11.
Co-doped CeO2 (Ba0.10Ga0.10Ce0.80O3–δ) was synthesized via a cost-effective co-precipitation technique, and the electrochemical properties of the solid oxide fuel cell were studied. The microstructural and surface morphological properties were investigated by XRD and SEM, respectively. The structure of the prepared material was found to be cubic fluorite with an average crystallite size of 36?nm. The ionic conductivity of the prepared BGC (Ba0.10Ga0.10Ce0.80O3–δ) electrolyte material was measured as 0.071?S?cm?1. The activation energy was found to be 0.46?eV using an Arrhenius plot. The maximum power density and current density achieved were 375?mW?cm?2 and 893?mA?cm?2, respectively, at 650?°C with hydrogen as a fuel. This study shows that the prepared co-doped electrolyte material could be used as a potential electrolyte to lower the operating temperature of solid oxide fuel cells.  相似文献   

12.
The removal of pesticides from water is a major environmental concern. This study investigates the electrochemical removal of the insecticide imidacloprid (IMD) from aqueous solutions on a boron-doped diamond (BDD) and Ta/PbO2 anodes under galvanostatic electrolysis. The influence of operating parameters, such as applied current density (50–100 mA cm?2), initial chemical oxygen demand COD (0) (281–953 mg L?1), temperature (25–65 °C) and pH (3.0–10.0) on COD and instantaneous current efficiency (ICE), was studied using the BDD electrode. The degradation efficiency of IMD increased by increasing current density and temperature, but noticeably decreased by the increase of initial pH value and initial concentration of IMD. The COD decay follows a pseudo-first-order kinetic, and the process was under mass transport control. COD removal reaches 90% when using an apparent current density of 100 mA cm?2, initial COD of 953 mg L?1, pH of 3.0 and at 25 °C after 4.5 h electrolysis time. Compared with Ta/PbO2, BDD anode has shown better performance and rapidity in the COD removal using the same electrolysis device.  相似文献   

13.
《分离科学与技术》2012,47(7):1521-1534
Abstract

Aqueous solutions of Acid Blue 74, Acid Orange 10, and Acid Violet 19 were subjected to Fenton/Fenton‐like oxidation and its combination with lime coagulation. The analysis indicated no dependence of chemical oxidation efficacy on dye concentration in the range of 0.1–1 g L?1. Complete or nearly complete (higher than 95%) color removal of all treated samples was observed. Dye:H2O2 weight ratio of 1∶2 proved optimal for treatment of all dye solutions by means of Fenton/Fenton‐like oxidation. Moderate doses of hydrogen peroxide led to the improvement of biodegradability of dye solutions. No formation of any toxic intermediates during the oxidation of Acid Orange 10 and Acid Violet 19 was detected. Only a slight toxicity increase was observed after Acid Blue 74 degradation by Fenton chemistry. H2O2/Fe3+ system with pH adjusted to 3 proved the most effective oxidation process. The combination of Fenton chemistry and subsequent lime coagulation was the most feasible treatment method of removing COD and UV254 and UVmax absorbance of dye solutions. Combined oxidation and coagulation was more effective for Acid Blue 74 and Acid Orange 10 elimination than for Acid Violet 19.  相似文献   

14.
过氧化氢溶液改性活性炭催化微波照射降解结晶紫的研究   总被引:2,自引:0,他引:2  
在过氧化氢改性活性炭(AC)存在下,微波照射能使结晶紫溶液快速降解。本文采用UV-vis光谱、离子色谱和液相色谱(HPLC)探讨了过氧化氢浓度、浸泡时间、微波照射时间、催化剂用量以及结晶紫溶液初始浓度和酸度等因素对结晶紫降解率的影响。结果表明,提高微波照射时间或增加改性AC加入量可提高降解率。改性AC作为微波降解结晶紫...  相似文献   

15.
In this study, silver‐ or copper‐doped TiO2–Ce‐, TiO2–La‐, and commercial TiO2 (P25)‐supported catalysts were prepared. The catalysts and supports were characterised by powder X‐ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and nitrogen adsorption studies. UV‐light‐assisted heterogeneous Fenton‐like oxidation of two different‐structure dyes (anionic azo dye Orange II, CI Acid Orange 7 and cationic triphenylmethane dye Crystal Violet, CI Basic Violet 3) was investigated over the catalysts. Higher catalytic activity was observed in the oxidation of Orange II than in the oxidation of Crystal Violet. For both dyes, the TiO2–Ce and TiO2–La‐supported catalysts, which were in the form of anatase only, gave higher photocatalytic activity than the P25‐supported catalysts, which were in the form of anatase and rutile. Complete colour removal was observed during oxidation of Orange II over Cu/TiO2–Ce and Cu/TiO2–La catalysts, whereas the highest degree of decolorisation, 89.3%, was achieved by oxidation of Crystal Violet over Ag/TiO2–Ce. The pH of the solution affected the surface state of the TiO2, thus affecting the photocatalytic degradation of the dyes. The surface area of the catalysts is also a key parameter that influences their photocatalytic activity. It was observed that catalysts having higher surface areas brought about greater dye degradation.  相似文献   

16.
Photocatalytic degradation of 4-chlrophenol (4-CP) using UVA-LED assisted persulfate and hydrogen peroxide activated by the nZVI (Nano Zero Valent Iron) in a batch photocatalytic reactor was investigated. The reaction involved a lab-scale photoreactor irradiated with UVA-LED light emitted at 390 nm. The efficiency of the reaction was evaluted in terms of 4-CP degradation and mineralization degree at different pH of solution, initial concentrations of nZVI, persulfate, hydrogen peroxide and 4-CP. In UVA-LED/H2O2/nZVI process, complete degradation of 4-CP (>99%) and 75% mineralization was achieved at pH of 3, hydrogen peroxide concentration of 0.75 mM, nZVI dosage of 1mM and initial 4-CP concentration of 25mg/L at the reaction time of 30 min. The optimum conditions obtained for the best 4-CP degradation rate were at an initial concentration of 25mg/l, persulfate concentration of 1.5mM, nZVI dosage of 1mM, pH of 3 and reaction time of 120min for UVA-LED/persulfate/nZVI process. It was also observed that the 4-CP degradation rate is dependent on initial 4-CP concentrations for both processes. The pseudo-first-order kinetic constant at 25mg/L initial concentration of 4-CP was found to be 1.4×10?1 and 3.8×10?2 in UVA-LED/H2O2/nZVI and UVA-LED/persulfate/nZVI processes, respectively. Briefly, the UVA-LED/H2O2/nZVI process enhanced the degradation rate of 4-CP by 3.67-times in comparison to UVA-LED/persulfate/nZVI process at 30min contact time, which serves as a new and feasible approach for the degradation of 4-CP as well as other organic contaminants containing wastewater.  相似文献   

17.
BACKGROUND: In this study electrochemical treatment of dairy industry wastewater (DW) was investigated using a combined electrode system consisting of iron and aluminum as sacrificial electrodes. The dairy industry generates strong wastewaters characterized by high biological oxygen demand and chemical oxygen demand concentrations. Dairy industry waste effluents are concentrated in nature, and the main contributors of organic load to these effluents are carbohydrates, proteins and fats originating from the milk. Since dairy waste streams contain high concentrations of organic matter, these effluents may cause serious environmental problems. RESULTS: A pole changer device was employed to change polarization in given time intervals to generate iron and aluminum based coagulants respectively. The effects of current density, initial pH, sodium sulfate (Na2SO4) and H2O2 concentrations on the removal efficiency were investigated. The best experimental conditions obtained in electrochemical studies were as follows: current density = 15 mA cm?2, natural pH, without supporting electrolyte addition, H2O2 concentration = 3 × 1000 mg L?1. Under these conditions, 79.2% COD removal from DW was achieved. CONCLUSION: According to the results, 20 min electrolysis is enough, since insignificant variations in COD removal were observed after this time. These methods were found to be successful for the treatment of DW. Copyright © 2011 Society of Chemical Industry  相似文献   

18.
BACKGROUND: Textile industries generate considerable amounts of waste‐water, which may contain strong colour, suspended particles, salts, high pH and high chemical oxygen demand (COD) concentration. The disposal of these coloured wastewaters poses a major problem for the industry as well as a threat to the environment. In this study, electrochemical oxidation of Basic Blue 3 (BB3) dye was studied in a bipolar trickle tower (BTT) reactor using Raschig ring shaped boron‐doped diamond (BDD) electrodes in recirculated batch mode. The effects of current density, temperature, flow rate, sodium sulfate concentration (Na2SO4) as supporting electrolyte, and initial dye concentration were investigated. RESULTS: The best experimental conditions obtained were as follows: current density 0.875 mA cm?2, temperature 30 °C, flow rate 109.5 mL min?1, Na2SO4 concentration 0.01 mol L?1. Under these conditions, 99% colour and 86.7% COD removal were achieved. Toxicity tests were also performed on BB3 solutions under the best experimental conditions. CONCLUSION: Based on these results, the BDD anode was found to be very successful for the simultaneous degradation of BB3 and removal of COD. Additional toxicity test results also showed that electrochemical treatment using a BDD Raschig ring anode in a BTT reactor is an effective way of reducing toxicity as well as removing colour and COD. Copyright © 2010 Society of Chemical Industry  相似文献   

19.
The degradation of C.I. Acid Orange 7 by ozone combined with hydrogen peroxide was carried out in a hollow fiber membrane reactor, and batch recirculation mode of aqueous phase was employed. The effect of initial pH, hydroxyl radical scavenger, hydrogen peroxide concentration, liquid recirculation rate, gas flow rate, and gaseous ozone concentration on the decolorization of C.I. Acid Orange 7 was investigated. The results showed that the decolorization of C.I. Acid Orange 7 fits the pseudo-half-order kinetic model. The rate constant increased with the increase of initial pH, hydrogen peroxide concentration, liquid recirculation rate, gas flow rate, and gaseous ozone concentration. The presence of hydroxyl radical scavenger inhibited the decolorization rate by over 50%. The combination of ozone with hydrogen peroxide achieved a higher COD removal efficiency than ozone alone in the membrane reactor.  相似文献   

20.
BACKGROUND: A mesoporous alumina supported nanosized Fe2O3 was prepared through an original synthesis procedure and used as a heterogeneous catalyst for the Fenton process degradation of the model azo dye C.I. Acid Orange 7 enhanced by ultrasound irradiation (US/Fe2O3‐Al2O3‐meso/H2O2 system). The effect of various operating conditions was investigated, namely hydrogen peroxide concentration, initial pH, ultrasonic power and catalyst loading. RESULTS: The results indicated that the degradation of C.I. Acid Orange 7 followed a pseudo‐first‐order kinetic model. There exists an optimal hydrogen peroxide concentration, initial pH, ultrasonic power and catalyst loading for decolorization. The aggregate size of the spent catalyst was reduced after dispersion in water by ultrasonic irradiation. A very low level of iron leaching was observed ranging from < 0.1 to 0.23 mg L?1. The intermediate products of C.I. Acid Orange 7 degradation were identified using gas chromatography–mass spectrometry (GC‐MS). CONCLUSION: The optimal conditions for efficient C.I. Acid Orange 7 degradation were pH close to 3, hydrogen peroxide concentration 4 mmol L?1, catalyst loading 0.3 g L?1, and ultrasonic power 80 W. Copyright © 2011 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号