首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of carbon nanoreinforcements of different shapes on the mechanical properties of epoxy‐based composites is studied. It is found that while nanodiamond and fibrous (carbon nanotube and nanofiber) particles provided better tensile properties, platelet (graphene oxide) nanoreinforcements lead to a considerable increase in the fracture toughness of the composites. The trend of the results is explained on the basis of the geometrical characteristics of the reinforcements. The accuracy of several micromechanics‐based criteria for predicting the Young's modulus of composites is investigated for different nanoparticle shapes. The state of dispersion of nanofillers and the fracture surface features of all composites are examined using TEM and SEM.

  相似文献   


2.
Flocculation of the filler particles in isotactic poly(propylene)/carbon black (iPP/CB) composite melts provides a way to understand electrical and rheological percolation processes. The iPP/CB composites were prepared by mild compounding to ensure a good filler dispersion. Electrical and dynamic rheological characterizations are used to monitor the network formation process in the composite melts. It is found that rheological percolation is more difficult to achieve than the electrical percolation in iPP/CB composites. The discrepancy comes from the different mechanisms for electron transport and stress transfer through the filler network.

  相似文献   


3.
Using the experience gained from the development of polymer–polymer nanofibrillar composites (NFCs), an attempt was undertaken to manufacture PET single polymer nanofibrillar composites. For this purpose polypropylene (PP) was removed by selective extraction from a knitted textile manufactured with PP/PET (80:20 by wt) blend. The remaining PET nanofibrillar textile was then sandwiched between lower‐melting PET films and compression molded at 120 °C. The obtained PET single polymer NFCs comprised PET nanofibrils as reinforcement and showed an improvement in the tensile strength and modulus of 37–100 and 40–140%, respectively (depending on the annealing temperature after compression molding and the test direction) compared to those of the starting isotropic matrix film.

  相似文献   


4.
Based on an in situ template method, branched phosphazene‐containing nanotubes were synthesized via a controlled two‐step adding technique of acid acceptors. Structural and morphological characterizations of the as‐synthesized products were performed by SEM, TEM, EDX and FTIR. The results showed that the branched nanotubes were had inner and outer diameters of 8 and 50–150 nm, respectively. In addition, a formation mechanism for the nanostructures was proposed.

  相似文献   


5.
Design of experiments is employed to investigate the interrelationships between processing and nanotube surface chemistry on the properties of PP nanocomposites. Statistically significant effects of nanomaterial type and concentration, extrusion temperature, screw speed, and recirculation time, and their interactions, on nanocomposite thermal properties and stability are isolated. The effects of these factors on the shear storage modulus, the low‐frequency slope of the shear storage modulus, decomposition temperature, and melt temperature are explored. Nanotube concentration has the most significant effect in enhancing the decomposition temperature of the nanocomposite, while long extrusion time and higher temperatures lead to deteriorated properties.

  相似文献   


6.
PBS is partially crosslinked by using DCP as an initiator. A low gel fraction (<30 wt%) and low crosslink density of the partially crosslinked PBS are obtained at a DCP content of <0.5 wt%. Consequently, the partially crosslinked PBS retains both its processability and its crystallinity. The overall crystallization rate of the PBS is enhanced by partial crosslinking as evidenced by a considerable increase in crystallization temperature (Tc). Meanwhile, the mechanical properties of PBS are significantly improved by the partial crosslinking. The structure/property relationships of the partially crosslinked PBS are explored.

  相似文献   


7.
To improve the poor mechanical properties of uniaxially ultra‐drawn films along the transverse direction, lamination of two ultrahigh molecular weight polyethylene/ethylene dimethylaminoethyl methacrylate copolymer blend films was carried out in the rectangular elongation direction by a microwave heating method. The characteristics of the successful laminated films were analyzed theoretically and experimentally. The original orientation of the crystallites for the blend films was maintained perfectly after lamination, and the preferential directions intersected each other. The Young's modulus increased symmetrically with respect to the 45 ° direction. This is the first report concerning a drastic improvement of the Young's modulus in the transverse direction for films ultra‐drawn along one direction.

  相似文献   


8.
A fluorinated acrylic resin was synthesized for use as a co‐monomer with a commercially available epoxy resin for UV‐cured interpenetrating polymer network preparation. Hybrid IPN networks were achieved with morphology ranging from a co‐continuous IPN to complete phase separation simply by changing monomer ratios. Highly hydrophobic coatings with good adhesion properties on glass substrates were obtained.

  相似文献   


9.
Electroactive macroporous poly[(vinylidene fluoride)‐co‐trifluoroethylene] membranes have been produced by solvent evaporation at room temperature, starting with a diluted solution of the copolymer in dimethylformamide. The pore architecture consists of interconnected spherical pores. This architecture is independent of the membrane thickness. The thickness of the membranes ranges from a few to several hundred µm, using spin coating and evaporation in static conditions, respectively. The pore structure is explained by a spinodal decomposition of the liquid/liquid phase separation and crystallization in the copolymer‐rich phase.

  相似文献   


10.
PET/PEN blends were prepared over the full composition range via a melt mixing process under various processing conditions. This resulted in transesterification reactions and formation of copolymer structures with various average sequence block lengths and degree of randomness (RD) determined by 1H NMR. It was seen that with an increase in time and temperature of mixing copolymer content (TEN%) and RD increased, whereas the , values were decreased. The differences in the extent of transreactions arising from different processing histories showed their systematic influence on rheological characteristics. Moreover due to progress of transreactions during the rheological measurements, convergence was seen in all the rheological characteristics at terminal zones in the high frequency regions. Similar convergence in the copolymer structural parameters was also obtained by NMR analysis. An increase in TEN% led to a systematic increase in viscosity of the blends. A decrease in the , values results in an increase in elasticity and relaxation time due to improvement of blend interface with increase in extent of copolymer formation.

  相似文献   


11.
Polyurethanes based on vegetable oil were synthesized with castor oil and toluene diisocyanate, isophorone diisocyanate or hexamethylene diisocyanate, using dibutyltin dilaurate as a catalyst. The effects of the nature of the diisocyanate on the evolution of the kinetics, as well as the physical and mechanical properties and the thermal stability, of the different synthesized polyurethanes were investigated, and these complement data from the literature on equivalent systems. The polymerization kinetics, degree of swelling and mechanical properties were greatly affected by the diisocyanate nature, whereas the rheological properties and thermal stability were found to be similar for all polyurethanes.

  相似文献   


12.
Bio‐based TPUs from dimer acid‐based polyols are synthesised by using a two‐step prepolymer process including reactive processing. The effect of the polyol on the final chemical structures, morphologies and properties of bio‐based TPUs is evaluated by different analytical techniques. It is observed that the percentage of hard segment (HS) distributed in organised and unorganised phases is a key factor to control the materials properties. DSC reveals that the percentages of HS dispersed in the soft domains are high at low experimental HS contents. Multiscale microscopies show better defined organised structures with increasing HS content in TPUs, highlighting the importance of the distribution between hard and soft segments in the material structure.

  相似文献   


13.
Cellulose‐based fibers were prepared by electrospinning from cellulose dissolved in NaOH/urea in the presence of a small amount of polyol binders. The as‐spun products were examined with SEM. Pure cellulose solution did not produce fibrous materials, because it often formed spherical nanoparticles with diameters ranging from 100 to 300 nm. However, bicomponent fibrous materials were obtained successfully from mixtures of cellulose and HMPEG or PVA by electrospinning. The cellulose/HMPEG electrospun fibers had average diameters of 400 nm. The content of NaOH and urea as well as the stiffness of cellulose chains were found to have significant effect on the electrospinning process.

  相似文献   


14.
Nowadays, silicon represents the most important material used for microelectronic applications. In this paper, both H–Si (111) surfaces and H–Si powders are used to initiate a multifunctional acrylate photopolymerization. The polymers formed are characterized by IR spectroscopy. This should be the way to create either an acrylate polymer coating on a Si wafer or a polymer film containing covalently linked silicon particles.

  相似文献   


15.
Nanocomposites of cassava starch reinforced with waxy starch nanocrystals were prepared. They showed a 380% increase of the rubbery storage modulus (at 50 °C) and a 40% decrease in the water vapor permeability. X‐ray spectra show that the composite was more amorphous than the neat matrix, which was attributed to higher equilibrium water content in the composites. TGA confirmed this result and its thermal derivative suggested the formation of hydrogen bonding between glycerol and the nanocrystals. The reinforcing effect of starch nanocrystals was attributed to strong filler/matrix interactions due to the hydrogen bonding. The decrease of the permeability suggests that the nanocrystals were well dispersed, with few filler/filler interactions.

  相似文献   


16.
Preparation and analysis of morphologic and electrical properties of high‐performance multiwalled carbon nanotube/polyamide 6 nanocomposites was achieved. The MWNTs were surface‐coated by in situ polymerization of ethylene as catalyzed directly from the nanotube surface previously treated by a highly active metallocene‐based complex. The so‐produced polyethylene‐coated MWNTs were melt‐mixed with the PA6 matrix. Pristine MWNTs were also dispersed in PA6. The in situ ethylene polymerization/coating reaction allowed the destructuring of the native bundle‐like aggregates leading to the preparation of nanocomposites with improved properties even at very low nanofiller content.

  相似文献   


17.
Next to the intended increase of the impact toughness, impact modification of polycarbonate generally results in an unwanted decrease in yield stress and time‐to‐failure under constant stress. It is demonstrated that this loss in strength can be fully compensated for by an annealing treatment, or by increasing the mold temperature. The influence of impact modification on the short‐ and long‐term strengths of glassy polymers is predicted by the extension of existing models with a scaling rule based on the filler volume percentage. Introduction of this scaling rule in the evolution of yield stress during physical aging even allows for the direct prediction of yield stress on the basis of processing conditions.

  相似文献   


18.
Surface modification of sulfur by vacuum plasma polymerization with acetylene was applied in order to modify its surface properties without losing reactivity for vulcanization. A nm‐thin layer of crosslinked polyacetylene was deposited on the surface of the sulfur powder. Its surface energy was decreased as monitored by wetting in liquids of various polarities. A delay in the onset of weight loss by sublimation in thermal gravimetric analysis was shown by the plasma‐modified sulfur. Scanning electron microscopy showed a core/shell structure of the coated sulfur. In 50:50 blends of styrene‐butadiene rubber and ethylene‐propylene‐diene rubber, the encapsulated sulfur samples resulted in pronounced improvements in the mechanical properties relative to the use of unmodified sulfur.

  相似文献   


19.
Transparent polyimide (PI) and chemically modified graphene nanocomposite films are prepared from solutions of pyromellitic dianhydride (PMDA)/4,4′‐oxydianiline (ODA) poly(amic acid) with various amounts (0.2–0.8 wt%) of graphene carboxylic acid (GCA) in DMAc. The GCA is synthesized by modifying chemically oxidized graphene (COG) with many carboxylic acid groups (–COOH) and is well‐dispersed in DMAc, the organic solvent most frequently used for PI synthesis. The GCA sheets in the PI/GCA composite films are well‐dispersed and aligned two‐dimensionally in the direction parallel to the PI films, which enhances the mechanical properties of the nanocomposite films.

  相似文献   


20.
PLLA and stereocomplexed polylactide (sc‐PLA) nanofibers were formed by electrospinning solutions of the polymers in HFIP. A highly semi‐crystalline sc‐PLA nanofiber having only sc crystallites was confirmed by WAXD analysis. The diameters of the nanofibers of both polymers decreased slightly when they were annealed at 60 °C, which was near Tg. Enzyme degradation of both as‐spun PLLA and sc‐PLA nanofibers by proteinase K from Tritirachium album was carried out. The rate of degradation of the nanofibers can be controlled by varying annealing conditions, hence the extent of crystallinity.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号