首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evaluation of the sensory characteristics of food products has been, and will continue to be, the ultimate method for evaluating product quality. Sensory quality is a parameter that can be evaluated only by humans and consists of a series of tests or tools that can be applied objectively or subjectively within the constructs of carefully selected testing procedures and parameters. Depending on the chosen test, evaluators are able to probe areas of interest that are intrinsic product attributes (e.g., flavor profiles and off-flavors) as well as extrinsic measures (e.g., market penetration and consumer perception). This review outlines the literature pertaining to relevant testing procedures and studies of the history of sensory analysis of fluid milk. In addition, evaluation methods outside of traditional sensory techniques and future outlooks on the subject of sensory analysis of fluid milk are explored and presented.  相似文献   

2.
Microbes that may be present in milk can include pathogens, spoilage organisms, organisms that may be conditionally beneficial (e.g., lactic acid bacteria), and those that have not been linked to either beneficial or detrimental effects on product quality or human health. Although milk can contain a full range of organisms classified as microbes (i.e., bacteria, viruses, fungi, and protozoans), with few exceptions (e.g., phages that affect fermentations, fungal spoilage organisms, and, to a lesser extent, the protozoan pathogens Cryptosporidium and Giardia) dairy microbiology to date has focused predominantly on bacteria. Between 1917 and 2017, our understanding of the microbes present in milk and the tools available for studying those microbes have changed dramatically. Improved microbiological tools have enabled enhanced detection of known microbes in milk and dairy products and have facilitated better identification of pathogens and spoilage organisms that were not known or well recognized in the early 20th century. Starting before 1917, gradual introduction and refinement of pasteurization methods throughout the United States and many other parts of the world have improved the safety and quality of milk and dairy products. In parallel to pasteurization, others strategies for reducing microbial contamination throughout the dairy chain (e.g., improved dairy herd health, raw milk tests, clean-in-place technologies) also played an important role in improving microbial milk quality and safety. Despite tremendous advances in reducing microbial food safety hazards and spoilage issues, the dairy industry still faces important challenges, including but not limited to the need for improved science-based strategies for safety of raw milk cheeses, control of postprocessing contamination, and control of sporeforming pathogens and spoilage organisms.  相似文献   

3.
During the first 100 years of the Journal of Dairy Science, dairy foods and dairy production dairy scientists have partnered to publish new data and research results that have fostered the development of new knowledge. This knowledge has been the underpinning of both the commercial development of the fluid milk processing industry and regulations and marketing policies for the benefit of dairy farmers, processors, and consumers. During the first 50 years, most of the focus was on producing and delivering high-quality raw milk to factories and improving the shelf life of pasteurized fluid milk. During the second 50 years, raw milk quality was further improved through the use of milk quality payment incentives. Due to changing demographics and lifestyle, whole fluid milk consumption declined and processing technologies were developed to increase the range of fluid milk products (skim and low-fat milks, flavored milks, lactose-reduced milk, long-shelf-life milks, and milks with higher protein and calcium contents) offered to the consumer. In addition, technology to produce specialty high-protein sports beverages was developed, which expanded the milk-based beverage offerings to the consumer.  相似文献   

4.
Basic knowledge of mechanisms controlling reproductive processes in mammals was limited in the early 20th century. Discoveries of physiologic processes and mechanisms made early in the last century laid the foundation to develop technologies and programs used today to manage and control reproduction in dairy cattle. Beyond advances made in understanding of gonadotropic support and control of ovarian and uterine functions in basic reproductive biology, advancements made in artificial insemination (AI) and genetics facilitated rapid genetic progress of economically important traits in dairy cattle. Technologies associated with management have each contributed to the evolution of reproductive management, including (1) hormones to induce estrus and ovulation to facilitate AI programs; (2) pregnancy diagnosis via ultrasonography or by measuring conceptus-derived pregnancy-associated glycoproteins; (3) estrus-detection aids first devised for monitoring only physical activity but that now also quantitate feeding, resting, and rumination times, and ear temperature; (4) sex-sorted semen; (5) computers and computerized record software packages; (6) handheld devices for tracking cow location and retrieving cow records; and (7) genomics for increasing genetic progress of reproductive and other economically important traits. Because of genetic progress in milk yield and component traits, the dairy population in the United States has been stable since the mid 1990s, with approximately 9 to 9.5 million cows. Therefore, many of these technologies and changes in management have been developed in the face of increasing herd size (4-fold since 1990), and changes from pastoral or dry-lot dairies to increased housing of cows in confinement buildings with freestalls and feed-line lockups. Management of groups of “like” cows has become equally important as management of the one. Management teams, including owner-managers, herdsmen, AI representatives, milkers, and numerous consultants dealing with health, feeding, and facilities, became essential to develop working protocols, monitor training and day-to-day chores, and evaluate current trends and revenues. Good management teams inspect and follow through with what is routinely expected of workers. As herd size will undoubtedly increase in the future, practical reproductive management must evolve to adapt to the new technologies that may find more herds being milked robotically and applying technologies not yet conceived or introduced.  相似文献   

5.
The years 1917 to 2017 saw many advances in research related to the dairy heifer, and the Journal of Dairy Science currently publishes more than 20 articles per year focused on heifers. In general, nutrition and management changes made in rearing the dairy heifer have been tremendous in the past century. The earliest literature on the growing heifer identified costs of feeding and implications of growth on future productivity as major concepts requiring further study to improve the overall sustainability of the dairy herd. Research into growth rates and standards for body size and stature have been instrumental in developing rearing programs that provide heifers with adequate nutrients to support growth and improve milk production in first lactation. Nutrient requirements, most notably for protein but also for energy, minerals, and vitamins, have been researched extensively. Scientific evaluation of heifer programs also encouraged a dramatic shift toward a lower average age at first calving over the past 30 yr. Calving at 22 to 24 mo best balances the cost of growing heifers with their production and lifetime income potential. Increasingly, farms have become more progressive in adopting management practices based on the physiology and nutrient needs of the heifer while refining key economic strategies to be successful. Research published in the Journal of Dairy Science has an integral role in the progress of dairy heifer programs around the world.  相似文献   

6.
Total mixed rations (TMR) as we know them today did not exist in 1917. In fact, TMR are an invention of primarily the last half of the past 100 yr. Prior to that time many dairy herds were fed only forages, but dairy producers started moving toward TMR feeding as milk production per cow increased, herds became larger, freestall and large-group handling of cows became more common, and milking parlors became more prevalent. The earliest known reports in the Journal of Dairy Science of feeding “complete rations” or TMR may have appeared in the 1950s, but those studies were often reported only as abstracts at annual meetings of the American Dairy Science Association or in extension-type publications. The earliest full-length article on TMR in the journal was published in 1966. An advantage of feeding TMR as opposed to feeding forages supplemented with concentrates is the opportunity to make every bite of feed essentially a complete, nutritionally balanced diet for all cows. Nutritionally related off-feed (e.g., ingredient separation due to poor mixing, feed sorting by the animal, and so on), milk fat depression, and other digestive upsets were less likely to occur with TMR feeding. Feed mixer wagons, feed particle sizes, moisture content of diets, and other factors were not concerns before TMR feeding but are concerns today. Today, most dairy herds, especially larger herds in the United States and elsewhere, feed TMR.  相似文献   

7.
αS2-Casein (αS2-CN) comprises up to 10% of the casein fraction in bovine milk. The role of αS2-CN in casein micelles has not been studied in detail in part because of a lack of structural information on the molecule. Interest in the utilization of this molecule in dairy products and nutrition has been renewed by work in 3 areas: biological activity via potentially biologically active peptides, functionality in cheeses and products, and nutrition in terms of calcium uptake. To help clarify the behavior of αS2-CN in its structure-function relationships in milk and its possible applications in dairy products, this paper reviews the chemistry of the protein and presents a working 3-dimensional molecular model for this casein. The model was produced by threading the backbone sequence of the protein onto a homologous protein: chloride intracellular channel protein-4. Overall, the model is in good agreement with experimental data for the protein, although the amount of helix may be over-predicted. The model, however, offers a unique view of the highly positive C-terminal portion of the molecule as a surface-accessible area. This region may be the site for interactions with κ-carrageenan, phosphate, and other anions. In addition, most of the physiologically active peptides isolated from αS2-CN occur in this region. This structure should be viewed as a working model that can be changed as more precise experimental data are obtained.  相似文献   

8.
A meta-analysis of published studies was used to investigate the effect of rumen-protected methionine (RPM) added to the diets of lactating dairy cattle on dry matter intake, milk production, true milk protein (TMP) production, and milk fat yield. Differences in responses between 2 commonly used RPM products, Mepron (Evonik Industries, Hanau, Germany) and Smartamine (Adisseo, Antony, France), were investigated as well as dietary and animal factors that could influence responses. Diets were coded with respect to the amino acid (AA) deficiency of the control diet as predicted by the AminoCow model (version 3.5.2, http://www.makemilknotmanure.com/aminocow.php; 0 = no AA deficiency, 1 = Met deficiency, 2 = Met and Lys deficiency, 3 = Met and Lys plus at least 1 other AA deficiency) to test the effect of AA deficiencies on RPM response. Thirty-five studies were identified, 17 studies evaluating Mepron, 18 studies evaluating Smartamine, and 1 study evaluating both. This permitted 75 dietary comparisons between control and RPM-added diets. Diets were entered into the AminoCow and the 2001 National Research Council models to compare predictions of Met, Lys, and metabolizable protein (MP) flow. Mean Met and Lys in diets where RPM was fed were estimated to be 2.35 and 6.33% of MP, respectively. Predictions of flows between models were similar. Overall, RPM addition to diets increased production of TMP, both as percentage (0.07%) and yield (27 g/d). Dry matter intake and milk fat percentage were slightly decreased, whereas milk production was slightly increased. Differences between products were detected for all production variables, with Mepron-fed cows producing less TMP percentage but greater milk production, resulting in twice as much TMP yield. Milk protein response to RPM was not related to predicted AA deficiency, calculated Met deficiency, or Met as a percentage of MP. Other dietary factors, including Lys flow (g/d), Lys as percentage of MP, neutral detergent fiber percentage, crude protein percentage, or energy balance, had no detectable effects on TMP response. When cows with a predicted positive AA balance were fed RPM, milk production increased, but when AA balance was negative, milk production decreased. Amount of RPM added to the diet was not correlated to TMP response. This study does not support the necessity of a high Lys level as a prerequisite to obtaining a TMP response to feeding RPM or the MP requirement suggested by the National Research Council model (2001). However, more dose-response studies over a wide range of milk production and dietary regimens will be required to more clearly establish AA requirements and to predict responses to RPM supplementation.  相似文献   

9.
Since the mid-1800s, farmers have been housing livestock. What began as a part-time solution for cold winters, stormy days, or injured animals has evolved into the main or only area in which cows spend their adult lives. With this change, farmers, academic researchers, and industry innovators have shaped the farm landscape, literally. Over the last 100 years, changes have been made for productivity, health, milk quality, reproduction, animal well-being, and farm profitability. We review a snapshot of those changes and look ahead to the future of lactating dairy cattle housing. All housing systems are moving toward improved cow comfort. Stalls in tiestall and freestall systems are now designed to accommodate cows based on body size and, in some cases, stage of lactation. Farmers may choose to build a compost bedded or traditional bedded-pack barn to maximize cattle rest or accommodate various breeds or sizes of cows. Looking to the future, external pressure and public perception may push farmers to consider other alternatives to total confinement. Future housing plans may include access to pasture or exercise lots, allowing cows to express their preferences for being outside or inside. Housing that allows natural expression of behavior while maintaining cow cleanliness and health may improve the lives of cows and farmers.  相似文献   

10.
Milk protein concentrate (MPC) powders (~81% protein) were made from skim milk that was heat treated at 72°C for 15 s (LHMPC) or 85°C for 30 s (MHMPC). The MPC powder was manufactured by ultrafiltration and diafiltration of skim milk at 50°C followed by spray drying. The MPC dispersions (4.02% true protein) were prepared by reconstituting the LHMPC and MHMPC powders in distilled water (LHMPCw and MHMPCw, respectively) or milk permeate (LHMPCp and MHMPCp, respectively). Increasing milk heat treatment increased the level of whey protein denaturation (from ~5 to 47% of total whey protein) and reduced the concentrations of serum protein, serum calcium, and ionic calcium. These changes were paralleled by impaired rennet-induced coagulability of the MHMPCw and MHMPCp dispersions and a reduction in the pH of maximum heat stability of MHMPCp from pH 6.9 to 6.8. For both the LHMPC and MHMPC dispersions, the use of permeate instead of water enhanced ethanol stability at pH 6.6 to 7.0, impaired rennet gelation, and changed the heat coagulation time and pH profile from type A to type B. Increasing the severity of milk heat treatment during MPC manufacture and the use of permeate instead of water led to significant reductions in the viscosity of stirred yogurt prepared by starter-induced acidification of the MPC dispersions. The current study clearly highlights how the functionality of protein dispersions prepared by reconstitution of high-protein MPC powders may be modulated by the heat treatment of the skim milk during manufacture of the MPC and the composition of the solvent used for reconstitution.  相似文献   

11.
In the century of research chronicled between 1917 and 2017, dairy goats have gone from simply serving as surrogates to cows to serving as transgenic carriers of human enzymes. Goat milk has been an important part of human nutrition for millennia, in part because of the greater similarity of goat milk to human milk, softer curd formation, higher proportion of small milk fat globules, and different allergenic properties compared with cow milk; however, key nutritional deficiencies limit its suitability for infants. Great attention has been given not only to protein differences between goat and cow milk, but also to fat and enzyme differences, and their effect on the physical and sensory properties of goat milk and milk products. Physiological differences between the species necessitate different techniques for analysis of somatic cell counts, which are naturally higher in goat milk. The high value of goat milk throughout the world has generated a need for a variety of techniques to detect adulteration of goat milk products with cow milk. Advances in all of these areas have been largely documented in the Journal of Dairy Science (JDS), and this review summarizes such advances.  相似文献   

12.
Understanding filtration mechanisms at a molecular level is important for predicting structural and functional properties of globular milk proteins after membrane operations. This stage is thus highly decisive for the further development of membrane separations as an efficient alternative to chromatographic processes for the fractionation of milk proteins. In this study, we proposed an original and complete analytical package for the examination of the putative effect of filtration at both macroscopic and molecular levels. We then investigated the pertinence of this analytical package during ultrafiltration (UF) of globular milk proteins in both dead-end and crossflow modes. Reverse-phase HPLC combined with statistical computing was shown to be relevant for the assessment of even slight physically induced modifications. Adaptations of circular dichroism and solubility measurements, regarding their respective dependence on temperature and pH, were also useful for an accurate evaluation of functional modifications. At last, immunochemistry was proven to be a pertinent tool for the specific detection of modifications affecting a targeted protein, even in mixed solutions. Moreover, results obtained by such methods were shown to be coherent with data obtained from classical techniques such as fluorescence. For β-lactoglobulin, some physically induced modifications were noticed in the permeate because of shear stress inside membrane pores. In the case of α-lactalbumin dead-end UF, permeation was shown to affect protein characteristics because of an increase in the relative calcium content responsible for a conformational transition from the apo-form to the holo-form of the protein. Finally, during crossflow UF with limited transmission of BSA, observations were coherent with a partial aggregation because of the circulation of proteins in the filtration pilot. Such a hypothesis corroborates results previously mentioned in the literature.  相似文献   

13.
Previously observed strong relationships between dry matter (DM) intake and milk yield in dairy cows were the basis for this meta-analysis aimed to determine the influence of intake of specific dietary nutrients on milk yield and milk protein yield in Holstein dairy cows. Diets (563) from feeding trials published in the Journal of Dairy Science were evaluated for nutrient composition using 2 diet evaluation programs. Intake of nutrients was estimated based on DM intake and program-derived diet composition. Data were analyzed with and without the effect of stage of lactation. Models based on intake of nutrients improved prediction of milk yield and milk protein yield compared with DM intake alone. Intake of net energy of lactation was the dominant variable in milk yield prediction models derived from both diet evaluation models. Milk protein yield models also improved prediction over the DM intake model. These models were dominated by ruminally undegradable protein intake and included a number of energy-related intake variables. In most models, incorporating stage of lactation improved the model fit.  相似文献   

14.
The history of the last 100 years of the science and technology of yogurt, sour cream, cultured butter, cultured buttermilk, kefir, and acidophilus milk has been one of continuous development and improvement. Yogurt leads the cultured dairy product category in terms of volume of production in the United States and recent research activity. Legal definitions of yogurt, sour cream and acidified sour cream, and cultured milk, including cultured buttermilk, are presented in the United States Code of Federal Regulations and summarized here. A tremendous amount of research has been done on traditional and novel ingredients, starter cultures and probiotics, mix processing, packaging, chemical aspects, physical and sensory properties, microstructure, specialized products, composition, quality and safety of yogurt and various manufacturing methods, addition of flavorings, viscosity measurements, and probiotic use for sour cream. Over time, there have arisen alternative manufacturing methods, flavor problems, addition of flavorings, and use of probiotics for cultured buttermilk. Many health benefits are provided by yogurt and other cultured dairy products. One hundred years of testing and development have led to wider uses of cultured dairy products and new processing methods for enhanced shelf life and safety. Future research directions will likely include investigating the effects of probiotic dairy products on gut microbiota and overall health.  相似文献   

15.
Considerable progress has been made in understanding the protein and amino acid (AA) nutrition of dairy cows. The chemistry of feed crude protein (CP) appears to be well understood, as is the mechanism of ruminal protein degradation by rumen bacteria and protozoa. It has been shown that ammonia released from AA degradation in the rumen is used for bacterial protein formation and that urea can be a useful N supplement when lower protein diets are fed. It is now well documented that adequate rumen ammonia levels must be maintained for maximal synthesis of microbial protein and that a deficiency of rumen-degradable protein can decrease microbial protein synthesis, fiber digestibility, and feed intake. Rumen-synthesized microbial protein accounts for most of the CP flowing to the small intestine and is considered a high-quality protein for dairy cows because of apparent high digestibility and good AA composition. Much attention has been given to evaluating different methods to quantify ruminal protein degradation and escape and for measuring ruminal outflows of microbial protein and rumen-undegraded feed protein. The methods and accompanying results are used to determine the nutritional value of protein supplements and to develop nutritional models and evaluate their predictive ability. Lysine, methionine, and histidine have been identified most often as the most-limiting amino acids, with rumen-protected forms of lysine and methionine available for ration supplementation. Guidelines for protein feeding have evolved from simple feeding standards for dietary CP to more complex nutrition models that are designed to predict supplies and requirements for rumen ammonia and peptides and intestinally absorbable AA. The industry awaits more robust and mechanistic models for predicting supplies and requirements of rumen-available N and absorbed AA. Such models will be useful in allowing for feeding lower protein diets and increased efficiency of microbial protein synthesis.  相似文献   

16.
In recent years, a large increase in the production of milk protein concentrates (MPC) has occurred. However, compared with other types of milk powders, few studies exist on the effect of key processing parameters on powder properties. In particular, it is important to understand if key processing parameters contribute to the poor solubility observed during storage of high-protein MPC powders. Ultrafiltration (UF) and diafiltration (DF) are processing steps needed to reduce the lactose content of concentrates in the preparation of MPC with a protein content of 80% (MPC80). Evaporation is sometimes used to increase the TS content of concentrates before spray drying, and some indications exist that inclusion of this processing step may affect protein properties. In this study, MPC80 powders were manufactured by 2 types of concentration methods: membrane filtration with and without the inclusion of an evaporation step. Different concentration methods could affect the mineral content of MPC powders, as soluble salts can permeate the UF membrane, whereas no mineral loss occurs during evaporation, although a shift in calcium equilibrium toward insoluble forms may occur at high protein concentration levels. It is more desirable from an energy efficiency perspective to use higher total solids in concentrates before drying, but concerns exist about whether a higher protein content would negatively affect powder functionality. Thus, MPC80 powders were also manufactured from concentrates that had 3 different final protein concentrations (19, 21, and 23%; made from 1 UF retentate using batch recirculation evaporation, a similar concentration method). After manufacture, powders were stored for 6 mo at 30°C to help understand changes in MPC80 properties that might occur during shelf-life. Solubility and foaming properties were determined at various time points during high-temperature powder storage. Inclusion of an evaporation step, as a concentration method, resulted in MPC80 that had higher ash, total calcium, and bound calcium (of rehydrated powder) contents compared to concentration with only membrane filtration. Concentration method did not significantly affect the bulk (tapped) density, solubility, or foaming properties of the MPC powders. Powder produced from concentrate with 23% protein content exhibited a higher bulk density and powder particle size than powder produced from concentrate that had 19% protein. The solubility of MPC80 powder was not influenced by the protein content of the concentrate. The solubility of all powders significantly decreased during storage at 30°C. Higher protein concentrations in concentrates resulted in rehydrated powders that had higher viscosities (even when tested at a constant protein concentration). The protein content of the concentrate did not significantly affect foaming properties. Significant changes in the mineral content are used commercially to improve MPC80 solubility. However, although the concentration method did produce a small change in the total calcium content of experimental MPC80 samples, this modification was not sufficiently large enough (<7%) to influence powder solubility.  相似文献   

17.
Effects of milk protein variants on the protein composition of bovine milk   总被引:2,自引:0,他引:2  
The effects of β-lactoglobulin (β-LG), β-casein (β-CN), and κ-CN variants and β-κ-CN haplotypes on the relative concentrations of the major milk proteins α-lactalbumin (α-LA), β-LG, αS1-CN, αS2-CN, β-CN, and κ-CN and milk production traits were estimated in the milk of 1,912 Dutch Holstein-Friesian cows. We show that in the Dutch Holstein-Friesian population, the allele frequencies have changed in the past 16 years. In addition, genetic variants and casein haplotypes have a major impact on the protein composition of milk and explain a considerable part of the genetic variation in milk protein composition. The β-LG genotype was associated with the relative concentrations of β-LG (A » B) and of α-LA, αS1-CN, αS2-CN, β-CN, and κ-CN (B > A) but not with any milk production trait. The β-CN genotype was associated with the relative concentrations of β-CN and αS2-CN (A2 > A1) and of αS1-CN and κ-CN (A1 > A2) and with protein yield (A2 > A1). The κ-CN genotype was associated with the relative concentrations of κ-CN (B > E > A), αS2-CN (B > A), α-LA, and αS1-CN (A > B) and with protein percentage (B > A). Comparing the effects of casein haplotypes with the effects of single casein variants can provide better insight into what really underlies the effect of a variant on protein composition. We conclude that selection for both the β-LG genotype B and the β-κ-CN haplotype A2B will result in cows that produce milk that is more suitable for cheese production.  相似文献   

18.
19.
对扬州大学实验农牧场7头中国荷斯坦牛泌乳早期乳常规营养成分、酸度及乳蛋白组分的相对含量进行研究。结果表明,产犊后1h的乳脂率、乳蛋白含量、总固形物含量、滴定酸度、密度最高,而pH值最低,随后乳脂率、乳蛋白率、总固形物含量、滴定酸度密度急剧下降,到60h时接近常乳水平,而pH值逐渐上升,到第7d时接近常乳水平。产犊后1h初乳中免疫球蛋白的相对含量最高,为20.6%,到第5d时接近常乳水平。研究表明,产犊后3d内所产的乳最具有开发价值。  相似文献   

20.
研究乳化盐强化对乳蛋白浓缩物85(MPC85)基本成分、粒径、溶解性和表面疏水性(H0)以及蛋白分子量的影响。结果表明,柠檬酸钠(SCS)单独使用或者与焦磷酸钠(SPP)复配均能够显著改变MPC85的粒径和溶解性,且缩短了达到稳定粒径和溶解性所需要的时间(p<0.05)。其中,单独使用SCS可使得MPC85粒径由31.37μm降低至20.67μm,达到稳定粒径值的时间缩短至360 min。SCS与SPS按照不同比例使用时,随着SCS占比的增加,粒径值显著降低(p<0.05),且溶解性由77.42%增加至81.43%,同时达到稳定溶解度的时间缩短;乳化盐可以改变蛋白构象,使得更多疏水基团暴露,从而提高H0;复配乳化盐会降低分子量>60 ku的蛋白含量,且SPP和磷酸三钠(SPS)使得MPC85形成小分子量蛋白,分子量介于κ-CN与β-LG之间。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号