首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(vinyl chloride)/chlorinated polyethylene (PVC/CPE)/methylacryloylpropyl‐containing polyhedral oligomeric silsesquioxane (MAP–POSS) nanocomposites are prepared. The plastic behavior and dynamic rheological behavior of PVC/CPE/MAP–POSS are investigated. The influences of composition on dynamic storage modulus G′, loss modulus G″, and complex viscosity η* of PVC/CPE/MAP–POSS melts are discussed. The dynamic mechanical properties, mechanical properties, and morphology are determined. The results show that both plastic time and balance torque of the nanocomposites decrease, but the G′, G″, and η* all increase with increasing MAP–POSS content. The maximum value of the dynamic mechanical loss tan δ decreases and elasticity increases when MAP–POSS is added. The impact strength of the nanocomposites increases with increasing MAP–POSS content and has the best value at 10% content of MAP–POSS, which is 5.38 kJ/m2 higher than that of the blend without MAP–POSS. The MAP–POSS can be used as an efficient process aid and impact aid for the PVC/CPE blend. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

2.
The polyhedral oligomeric silsesquioxanes which contains methylacryloylpropyl groups (MAP‐POSS) was synthesized. The MAP‐POSS/PVC nanocomposites were prepared. The influences of composition, shear rate' shear stress on melting rheological behavior of MAP‐POSS/PVC nanocomposites were discussed. The dynamic mechanical properties, mechanical properties, and morphology were determined by DMA, material tester and SEM, respectively. The result shows that the plastic times decreases and melt viscosity increases with increasing MAP‐POSS content. The n has a maximal value at 5 wt% MAP‐POSS content, but have best impact strength at 3%. MAP‐POSS can use as process aid and impact aid of PVC at appropriate contents. POLYM. COMPOS., 31:1822–1827, 2010. © 2010 Society of Plastics Engineers.  相似文献   

3.
Fc-CHCH-C6H6-(C5H9)7Si8O12 (POSS1, Fc: ferrocene) which contain both metal and CC double bond was firstly synthesized by Wittig reaction. The chemical structure of POSS1 was characterized by FTIR, 1H, 13C and 29Si NMR, mass spectrometry and elemental analysis, and the magnetic property of POSS1 have also been studied. Polystyrene composites containing inorganic-organic hybrid polyhedral oligomeric silsesquioxane (POSS1) were prepared by bulk free radical polymerization. XRD and TEM studies indicate that POSS1 is completely dispersed at molecular level in PS matrix when 1 wt% POSS1 is introduced, while some POSS1-rich nanoparticals are present when content of POSS1 is beyond 3 wt%. GPC results show that molecular weight of the PS/POSS1 nanocomposites are increased with addition of POSS1. TGA and TMA data show the thermal stabilities of PS/POSS1 nanocomposites have been improved compared to neat PS. The PS/POSS1 nanocomposites also display higher glass transition temperatures (Tg) in comparison with neat PS. Viscoelastic properties of PS/POSS1 nanocomposites were investigated by DMTA. The results show the storage modulus (E′) values (temperature>Tg) and the loss factor peak values of the PS/POSS1 nanocomposites are higher than that of neat PS. Mechanical properties of the PS/POSS1 nanocomposites are improved compared to the neat PS.  相似文献   

4.
The plasticizing and thermostabilizing effect of poly(ethylene glycol)–polyhedral oligomeric silsesquioxane (PEG‐POSS) on poly(vinyl chloride) (PVC) is discussed thoroughly in this work. As PEG‐POSS content increases, PVC becomes more flexible and the decomposition temperature of PVC increases slightly. Meanwhile, the temperature of maximum HCl emission is elevated from 265.3 °C in neat PVC to 285.7 °C in PVC nanocomposites, with the peak intensity of HCl emission decreased by 30.8%, and a new lower intensity of HCl emission peak appearing at much higher temperature (around 370 °C), which is in accordance with the maximum degradation temperature of PEG‐POSS. Thereby, a possible dehydrochlorination mechanism is suggested according to the fact that the electron donor effect of ether groups would stabilize the C? Cl bonds by means of more electron cloud stacked in those bonds, which agrees with Fourier transform infrared and X‐ray photoelectron spectroscopy experiments in terms of hydrogen bonds. © 2016 Society of Chemical Industry  相似文献   

5.
A new compound was synthesized by chemical combination of (3‐mercapto)propyl‐heptaisobutyl polyhedral oligomeric silsesquioxane (POSS‐SH) and 1,3:2,4‐bis(3,4‐dimethylbenzylidene) sorbitol (DMDBS) via epichlorohydrin while hydroxyl groups were still retained in the product POSS‐DMDBS. The prepared POSS‐DMDBS was introduced into isotactic polypropylene (iPP) to improve crystallization behaviors of iPP and obtain nanocomposites with suitable mechanical properties. Crystallization and mechanical properties of iPP/POSS‐DMDBS were systematically investigated by wide‐angle X‐ray diffraction, polarization microscopy, atomic force microscopy, differential scanning calorimetry, and tensile tests. The spherulite size of the modified iPP was obviously decreased with the addition of POSS‐DMDBS, while the crystallization temperature was increased by 5°C to 9°C depending on the content of POSS‐DMDBS incorporated. POSS‐DMDBS exhibited relatively higher nucleating efficiency on iPP which is similar to that of DMDBS, confirmed by the increased crystallization temperature. It was also found that the tensile modulus of iPP after adding POSS‐DMDBS increased significantly with respect to pristine iPP, but the elongation values decreased. Introduction of POSS‐DMDBS in content less than 1 wt% could bring about effective influence on the crystallization behaviors of iPP, demonstrating its potential applications . POLYM. ENG. SCI., 57:357–364, 2017. © 2016 Society of Plastics Engineers  相似文献   

6.
This study focuses on investigating the use of polyhedral oligomeric silsesquioxanes (POSS) to plasticize poly(vinyl chloride) (PVC). Conventional organic plasticizers for PVC, such as dioctyl phthalate (DOP), are somewhat volatile, leading to plasticizer loss and unwanted deterioration of the material properties over time. Previous experimental results indicate that methacryl-POSS, which is much less volatile due to its hybrid organic-inorganic structure, has the ability to plasticize PVC. Methacryl-POSS is miscible in the PVC only up to 15 wt%, thereby limiting its suitability as a plasticizer. However, through the use of ternary compositions it is possible to increase the proportion of methacryl-POSS in PVC substantially. The Tg of appropriately formulated ternary PVC/POSS/DOP compounds can be reduced to near room temperature, and these materials exhibit desirable ductile behavior. Binary (PVC/DOP) and ternary (PVC/POSS/DOP) compounds formulated to the same Tg values showed considerably different mechanical properties. Such findings reveal the possibility of using POSS to engineer the mechanical properties of plasticized PVC.  相似文献   

7.
The biodegradable poly(butylene succinate) (PBS)/poly(ethylene oxide)‐polyhedral oligomeric silsesquioxane (PEO‐POSS) nanocomposites were prepared by the solution blending and melt‐injection methods. The effect of PEO‐POSS on the non‐isothermal and isothermal crystallization, morphology, as well as mechanical properties of PBS was carefully investigated. The PEO‐POSS nanoparticles dispersed well in the PBS matrix, with the diameters around 30 nm. From isothermal crystallization analysis, the incorporation of PEO‐POSS enhanced the crystallization of PBS due to the heterogeneous nucleation effect while the crystal structure of PBS remained. PBS/PEO‐POSS nanocomposites showed of higher glass transition temperatures than that of neat PBS, attributing to the existence of PEO‐POSS decreasing the flexibility of PBS chains. The elongation at break of the PBS/PEO‐POSS nanocomposites reached the maximum value with PEO‐POSS content of 5 wt%. However, the elastic modulus of PBS decreased after the incorporation of PEO‐POSS. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   

8.
The nanocomposite of the Poly(vinyl chloride)/acrylonitrile-chlorinated- polyethylene-styrene (ACS)/methylacryloylpropyl-contaning polyhedral oligomeric silsesquioxane (MAP-POSS) (PVC/ACS/MAP-POSS) was prepared. Plasticizing behavior, dynamic rheology behavior and mechanical properties of the nanocomposites were investigated. The results showed that the plastic time decreased with increasing MAP-POSS content. The dynamic storage modulus G ′, loss modulus G″ and complex viscosity η* of the nanocomposites all exhibit a monotonic change with increasing frequency, and all have maximum when MAP-POSS content is 4 wt%, at the same frequency. The MAP-POSS can be used as an efficient process aid and impact aid of PVC/ACS blend at appropriate content.  相似文献   

9.
Hybrid nanocomposites were prepared via solution blending of octaphenethyl POSS into novolac resin. The resulted hybrid blends were investigated by Fourier-transformed infrared spectra (FTIR), polarized optical microscopy (POM), wide X-ray diffraction and differential scanning calorimetry (DSC). FTIR results showed that there existed intermolecular hydrogen bond between the hydroxyl groups of the phenolic resin and POSS siloxane groups, which could promote POSS to disperse well in the polymer matrix up to 20 wt% POSS loading. At higher POSS loading, POSS would aggregate and lead to macrophase separation, which was demonstrated by POM, DSC and WXRD. Finally, hexamethylene tetramine was used to cure the novolac blends to form hybrid network phenolic nanocomposites. Dynamic mechanical analysis results showed that the storage modulus of the hybrid networks was improved up to 20 wt% POSS loading; the T g was increased with increasing POSS content and higher than that of the control phenolic resin except that 5 wt% POSS loading. Thermo gravimetric analysis showed that the thermal stability of hybrid networks was also enhanced with the incorporation of POSS.  相似文献   

10.
PVC/Na+–montmorillonite (MMT) nanocomposites were prepared via a simple technique of emulsion polymerization at several different MMT clay concentrations. X‐ray diffraction and transmission electron microscopy studies revealed the formation of a mixture of intercalated and exfoliated nanostructure. Tensile testing results showed that the tensile modulus of the nanocomposites increased with the addition of clay, while the tensile strength decreased little. The notched impact strength of the nanocomposites was also improved. For systems containing clay in the range of 2.1 to 3.5 wt %, the impact strength was almost two times as large as that of pure PVC. However, those mechanical properties began to decrease with the continuously increasing amount of clay. The fracture surface of pure PVC and the nanocomposites was observed by scanning electron microscope. Thermal properties of the nanocomposites were found to increase as a result of clay incorporation. The glass transition temperatures of the PVC/clay nanocomposites were nearly identical to that of pure PVC. The Vicat softening points exhibited a progressively increasing trend with the clay content added. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 277–286, 2004  相似文献   

11.
Yiqiang Zhao 《Polymer》2005,46(25):11640-11647
A series of composite materials were produced incorporating polyhedral oligomeric silsesquioxane (POSS) derivatives into polycarbonate (PC), by melt blending. Significant differences in compatibility were observed depending on the nano-scale filler's specific structure: trisilanol POSS molecules generally provided better compatibility with PC than fully-saturated cage structures, and phenyl-substituted POSS grades were shown to be more compatible with PC than fillers with other functional groups. Trisilanolphenyl-POSS/PC composites possess the best overall performance among the POSS materials tested. The high compatibility between the trisilanolphenyl-POSS and polycarbonate matrix results in generation of transparent samples up to 5 wt% POSS content. Slightly enhanced mechanical properties including tensile and dynamic mechanical modulus are observed with the increase of trisilanolphenyl-POSS loading at the cost of decreasing ductility of the nanocomposites. Importantly, upon orientation of the PC/POSS nanocomposite, crystallization of POSS within the oriented material results—this observation is consistent with a growing number of observations which suggest that ‘bottom-up’ formation of structures incorporating multiple POSS cages result from orientation of these nanocomposites, and that the hybrid organic-inorganic inclusions may be at the heart of observed nano-scale reinforcement.  相似文献   

12.
In order to increase the processability and mechanical properties of poly(vinyl chloride) (PVC), the terpolymer of acrylonitrile-chlorinated polyethylene-styrene (ACS) is used to modify the PVC. The plasticizing, rheological, and dynamic mechanical properties of PVC/ACS blends are investigated by means of torque rheometer, oscillation rheometer, and dynamic mechanical analyzer. The measurements of torque rheometer showed that both plasticizing time and stabilization torque are decreased with increasing ACS content. The PVC/ACS melts displayed larger dynamic storage modulus (G′), loss modulus (G′′), and complex viscosity (η*) than that of pure PVC, and these values reached maximum for the blend with 10 wt% ACS. When ACS content was below 10 wt%, PVC and ACS showed good compatibility in the blends by displaying a single T g; however, when ACS content was more than 15 wt%, the phase separation phenomena occurred in the blends. PVC/ACS blends showed larger storage modulus (E′) and loss modulus (E′′) than that of pure PVC, but these values decreased with increasing ACS content. ACS can enhance both tensile and impact strength of PVC, and the impact strength reached maximum with 15 wt% ACS content which is higher 2.5 kJ/m2 than the pure PVC. These results suggested that ACS is an efficient processing aid and toughening modifier for PVC at appropriate content.  相似文献   

13.
Poly(vinyl chloride) (PVC)/calcium carbonate (CaCO3) nanocomposites were synthesized by in situ polymerization of vinyl chloride (VC) in the presence of CaCO3 nanoparticles. Their thermal, rheological and mechanical properties were evaluated by dynamic mechanical analysis (DMA), thermogravimetry analysis (TGA), capillary rheometry, tensile and impact fracture tests. The results showed that CaCO3 nanoparticles were uniformly distributed in the PVC matrix during in situ polymerization of VC with 5.0 wt% or less nanoparticles. The glass transition and thermal decomposition temperatures of PVC phase in PVC/CaCO3 nanocomposites are shifted toward higher temperatures by the restriction of CaCO3 nanoparticles on the segmental and long-range chain mobility of the PVC phase. The nanocomposites showed shear thinning and power law behaviors. The ‘ball bearing’ effect of the spherical nanoparticles decreased the apparent viscosity of the PVC/CaCO3 nanocomposite melts, and the viscosity sensitivity on shear rate of the PVC/CaCO3 nanocomposite is higher than that of pristine PVC. Moreover, CaCO3 nanoparticles stiffen and toughen PVC simultaneously, and optimal properties were achieved at 5 wt% of CaCO3 nanoparticles in Young's modulus, tensile yield strength, elongation at break and Charpy notched impact energy. Detailed examinations of micro-failure micromechanisms of impact and tensile specimens showed that the CaCO3 nanoparticles acted as stress raisers leading to debonding/voiding and deformation of the matrix material around the nanoparticles. These mechanisms also lead to impact toughening of the nanocomposites.  相似文献   

14.
Octa(aminophenyl) polyhedral oligomeric silsesquioxane (OAP‐POSS) and boron‐containing phenol‐formaldehyde resin (BPFR) were synthesized, respectively. The BPFR nanocomposites with different OAP‐POSS content (wt%) were prepared, and their properties were characterized. The results show that the thermal degradation process of this nanocomposites can be divided into three stages, and they are all following the first order mechanism. The residual ratio and thermal degradation activation energy Ea of 9 wt% OAP‐POSS/BPFR nanocomposites are both better than others and the Ea increase gradually in three stages, which is 93.3, 134.0, and 181.9 kJ mol−1, respectively. Its residual ratio at 900°C is 36.48%. The mechanical loss peak temperature Tp is 228°C for 12 wt% OAP‐POSSS/BPFR nanocomposites, which is higher 48°C than pure BPFR. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

15.
The organic–inorganic hybrid nanocomposites from high‐impact polystyrene/octavinyl polyhedral oligomeric silsesquioxane (HIPS/POSS) containing various percentages of POSS were prepared by free radical polymerization and characterized by Fourier transform infrared spectroscopy (FTIR), 1H‐NMR, thermal gravity analysis (TGA), X‐ray diffraction (XRD), and transmission electron microscopy (TEM). The octavinyl POSS has formed covalent bond connected PS‐POSS hybrid with polystyrene. POSS can well disperse in the composites at the composition of 0.5 and 1 wt%. The mechanical properties and thermostability of HIPS/POSS nanocomposites were significantly improved. The tensile strength, the izod impact strength, and the elongation at break of the nanocomposite containing 1 wt% of POSS was increased, respectively, by 15.73%, 75.62%, and 72.71% in comparison with pristine HIPS. The thermal decomposition temperature of HIPS/POSS (1 wt% of POSS) was 33°C higher than that of pristine HIPS. The HIPS/POSS nanocomposites showed great potential for applications in many fields, such as electric appliance and automotive trim. POLYM. COMPOS. 37:1049–1055, 2016. © 2014 Society of Plastics Engineers  相似文献   

16.
《Polymer Composites》2017,38(4):691-698
Liquid‐like trisilanol isobutyl polyhedral oligomeric silsesquioxanes derivative (L‐POSS‐D) was synthesized with γ‐(2,3‐epoxypropoxy)propytrimethoxysilane (KH560) as corona and polyetheramine M1000 as canopy. Its structure and properties were characterized by FTIR, XPS, TGA and Rheology data. Epoxy nanocomposites with 0.0, 0.5, 1.0 and 2.0 wt% content of L‐POSS‐D were prepared. T g of the nanocomposites improved 47.6°C higher than pure epoxy resin. Mechanical properties, including flexural strength and impact toughness, were improved markedly with L‐POSS‐D. The morphologies of impact fracture were studied by SEM. POLYM. COMPOS., 38:691–698, 2017. © 2015 Society of Plastics Engineers  相似文献   

17.
This article investigates the mechanical, morphological, and thermal properties of poly(vinyl chloride) (PVC) and low‐density polyethylene (LDPE) blends, at three different concentrations: 20, 50, and 80 wt% of LDPE. Besides, composite samples that were prepared from PVC/LDPE blend reinforced with different date palm leaf fiber (DPLF) content, 10, 20, and 30 wt%, were also studied. The sample in which PVC/LDPE (20 wt%/80 wt%) had the greatest tensile strength, elongation at break, and modulus. The good thermal stability of this sample can be seen that T10% and T20% occurred at higher temperatures compared to others blends. DPLF slightly improved the tensile strength of the polymer blend matrix at 10 wt% (C10). The modulus of the composites increased significantly with increasing filler content. Ageing conditions at 80°C for 168 h slightly improved the mechanical properties of composites. Scanning electron microscopic micrographs showed that morphological properties of tensile fracture surface are in accordance with the tensile properties of these blends and composites. Thermogravimetric analysis and derivative thermogravimetry show that the thermal degradation of PVC/LDPE (20 wt%/80 wt%) blend and PVC/LDPE/DPLF (10 and 30 wt%) composites took place in two steps: in the first step, the blend was more stable than the composites. In the second step, the composites showed a slightly better stability than the PVC/LDPE (20 wt%/80 wt%) blend. Based on the above investigation, these new green composites (PVC/LDPE/DPLF) can be used in several applications. J. VINYL ADDIT. TECHNOL., 25:E88–E93, 2019. © 2018 Society of Plastics Engineers  相似文献   

18.
The demand for improved properties of common polymers keeps increasing, and several new approaches have been investigated. In the study reported here, composites with a polymer matrix comprising a blend of high‐density polyethylene with ethylene–vinyl acetate copolymer (EVA), and with polyhedral oligomeric silsesquioxane (POSS) as a nanostructure, were processed and characterized in terms of their thermal and morphological properties. For the preparation of the composites, the concentrations of the blend components (0, 50 and 100 wt%) and of the POSS (0, 1 and 5 wt%) were varied. X‐ray diffraction results indicated that the presence of EVA in the composites led to the appearance of crystalline domains at lower POSS concentrations. Transmission and scanning electron microscopy showed that samples with 1 wt% of POSS had a homogeneous distribution in the polymer matrix with average dimensions of ca 150 nm. However, the formation of aggregates occurred in samples with 5 wt% of POSS. Differential scanning calorimetry and thermogravimetic analyses indicated that the POSS did not affect the melt and degradation temperatures of the polymer matrix. POSS underwent aggregation at higher concentrations during the composite processing, indicating a solubility limit of around 1 wt%. The presence of EVA in the composite favors POSS aggregation due to an increase in the polarity of the polymer matrix. Copyright © 2009 Society of Chemical Industry  相似文献   

19.
The use of untreated sawdust as a filler in poly(vinyl chloride) (PVC) was examined—the effects of sawdust content on structural and thermal changes, and rheological and mechanical properties being of main interest. The results revealed that the torque and die entrance pressure drop values during mixing were independent of sawdust particles up to 23.1 wt%. The extrudate swell monotonically decreased up to 33.3 wt% sawdust content. Smooth wood‐like texture with controllable size of the extrudate could be obtained at a sawdust content greater than 33.3 wt%. Tensile, impact, flexural and hardness properties of the PVC/sawdust composites considerably decreased with up to 16.7 wt% sawdust content before leveling off for higher sawdust loadings. The composites having sawdust higher than 16.7 wt% showed a benefit of cost savings. The decreases in the mechanical properties of PVC with sawdust are explained in association with the presence of moisture, interfacial defects between fibre and polymer, and fibre dispersions in the PVC matrix. Thermal degradations of PVC in PVC/sawdust composites were evidenced by a decrease in decomposition temperature and an increase in polyene sequences, which were caused by Cl cleavage due to strong hydrogen bonds of fibre–PVC molecules. The maximum of tanδ transition and the glass transition temperature were found to improve with sawdust content as a result of re‐formation of hydrogen bonds between the macromolecules of the fibre and the polymer. The overall results in this work suggest that the properties of PVC/sawdust composites were strongly influenced by sawdust content up to 16.7 wt%. Beyond this value the effect of sawdust content on the properties was comparatively small. Copyright © 2003 Society of Chemical Industry  相似文献   

20.
The structure–property relationships of polypropylene/ethylene-propylene-diene (PP/EPDM) (80/20) nanocomposites containing single-walled carbon nanotubes (SWCNTs) by melt-mixing process were investigated, the main focus being on the effect of SWCNTs concentration and compatilizer content. Morphological observations by scanning electron microscopy (SEM) are presented in conjunction with the mechanical, thermal, and rheological properties of these nanocomposites. The tensile modulus of nanocomposites was enhanced by increasing the SWCNTs concentration. A high level of toughness in the thermoplastic elastomer polyolefin (TPO)/SWCNTs nanocomposite was achieved with 0.5 wt% of SWCNTs and 1 wt% of polypropylene-grafted maleic anhydride (PP-g-MA). Differential scanning calorimetry (DSC) experiments confirmed the nucleation effect of nanotubes on the crystallization process of the TPO/SWCNTs composites. An appreciable viscosity upturn and a non-terminal low frequency storage modulus were observed in nanocomposites containing SWCNTs whose values increased in the presence of compatibilizer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号