首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigated durability performance of wood‐plastic composites (WPCs) that were exposed to accelerated cycling of water immersion followed by freeze thaw (FT). The WPCs used in this study were made of high‐density polyethylene (HDPE) or polypropylene (PP) with radiata pine (Pinus radiata) wood flour using hot‐press molding. These two types of plastics included both recycled and virgin forms in the formulation. In the experiments, surface color, flexural properties, and dimensional stability properties (water absorption and thickness swelling) were measured for the FT cycled composites and the control samples. Interface microstructures and thermal properties of the composites were also investigated. The results show that the water absorption and the thickness swelling of the composites increased with the FT weathering. In the meantime, the flexural strength and stiffness decreased. Scanning electron microscopy (SEM) images of the fractured surfaces confirmed a loss of interface bonding between the wood flour and the polymer matrix. Differential scanning calorimetry (DSC) showed a decrease in crystallization enthalpy and crystallinity of the wood flour‐plastic composites as compared with the neat PP and HDPE samples. The crystallinity of the FT cycled composites using the virgin plastics (vPP and vHDPE) increased; however, the composites with the recycled plastics decreased in comparison with corresponding control samples. In general, the properties of the composites were degraded significantly after the accelerated FT cycling. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

2.
Wood‐plastic composites (WPCs) can absorb moisture in a humid environment owing to the hydrophilic nature of the wood, thereby making the products susceptible to microbial growth and loss of mechanical properties. In this study, rigid poly(vinyl chloride) (PVC)/wood‐flour composites (core layer) were coextruded with either unfilled rigid PVC (cap layer) or rigid PVC filled with a small amount (5–27.5%) of wood flour (composite cap layers) in order to decrease or delay the moisture uptake. The thickness of the cap layer and its composition in terms of wood flour content were the variables examined during coextrusion. Surface color, moisture absorption, and flexural properties of both coextruded and noncoextruded (control) composite samples were characterized. The experimental results indicated that both unfilled PVC and composite cap layers can be encapsulated over rigid PVC/wood‐flour composites in a coextrusion process. The moisture uptake rate was lower when a cap layer was applied in the composites, and the extent of the decrease was a strong function of the amount of wood flour in the cap layer but insensitive to cap layer thickness. Overall, coextruding PVC surface‐rich cap layers on WPCs significantly increased the flexural strength but decreased the flexural modulus as compared with those of control samples. The changes in bending properties were sensitive to both cap layer thickness and wood flour content. J. VINYL ADDIT. TECHNOL., 2008. © 2008 Society of Plastics Engineers  相似文献   

3.
In this study, we evaluated some physical and mechanical properties of polypropylene (PP) composites reinforced with pine‐cone flour and wood flour. Five types of wood–plastic composites (WPCs) were prepared from mixtures of cone flour, wood flour, PP, and a coupling agent. The water resistance and flexural properties of the composites were negatively affected by an increase in cone‐flour content. Extractives in the cone flour had a significant effect on the flexural properties of the WPCs. However, the flexural properties and water resistance of the WPC samples were not significantly affected by the addition of 10 wt % of the cone flour when compared to the WPC samples made from wood flour. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
Wood/plastic composites (WPCs) can absorb moisture in a humid environment due to the hydrophilic nature of the wood in the composites, making products susceptible to microbial growth and loss of mechanical properties. Co‐extruding a poly(vinyl chloride) (PVC)‐rich cap layer on a WPC significantly reduces the moisture uptake rate, increases the flexural strength but, most importantly, decreases the flexural modulus compared to uncapped WPCs. A two‐level factorial design was used to develop regression models evaluating the statistical effects of material compositions and a processing condition on the flexural properties of co‐extruded rigid PVC/wood flour composites with the ultimate goal of producing co‐extruded composites with better flexural properties than uncapped WPCs. Material composition variables included wood flour content in the core layer and carbon nanotube (CNT) content in the cap layer of the co‐extruded composites, with the processing temperature profile for the core layer as the only processing condition variable. Fusion tests were carried out to understand the effects of the material compositions and processing condition on the flexural properties. Regression models indicated all main effects and two powerful interaction effects (processing temperature/wood flour content and wood flour content/CNT content interactions) as statistically significant. Factors leading to a fast fusion of the PVC/wood flour composites in the core layer, i.e. low wood flour content and high processing temperature, were effective material composition and processing condition parameters for improving the flexural properties of co‐extruded composites. Reinforcing the cap layer with CNTs also produced a significant improvement in the flexural properties of the co‐extruded composites, insensitive to the core layer composition and the processing temperature condition. Copyright © 2009 Society of Chemical Industry  相似文献   

5.
Mechanical, thermal, and morphological properties of injection molded wood‐plastic composites (WPCs) prepared from poplar wood flour (50 wt%), thermoplastics (high density polyethlyne or polypropylene) with coupling agent (3 wt%), and hexagonal boron nitride (h‐BN) (2, 4, or 6 wt%) nanopowder were investigated. The flexural and tensile properties of WPCs significantly improved with increasing content of the h‐BN. Unlike the tensile and flexural properties, the notched izod impact strength of WPCs decreased with increasing content of h‐BN but it was higher than that of WPCs without the h‐BN. The WPCs containing h‐BN were stiffer than those without h‐BN. The tensile elongation at break values of WPCs increased with the addition of h‐BN. The differential scanning calorimetry (DSC) analysis showed that the crystallinity, melting enthalpy, and crystallization enthalpy of the WPCs increased with increasing content of the h‐BN. The increase in the crystallization peak temperature of WPCs indicated that h‐BN was the efficient nucleating agent for the thermoplastic composites to increase the crystallization rate. POLYM. COMPOS., 35:194–200, 2014. © 2013 Society of Plastics Engineers  相似文献   

6.
This research reports the influence of the mechanical properties of thermoplastic polyurethane (TPU) as a function of wood filler percentage. Wood flour was mixed with two different chemically based TPUs. Also, moisture content during compounding process as well as the origin of moisture (wood or TPU) were studied. All experimental designs and statistical analysis were done with the software Design Expert Version 10. Composite preparation took place in a multi‐stage process. The results showed that 70% wood filler can be incorporated in the composite manufacture. The properties of the composite were mainly influenced by the proportion of wood and TPU. Wood flour increased the density, hardness, water absorption, and tensile modulus with a decrease in impact resistance and abrasion resistance of the composite. Tensile strength exhibited a decrease up to ~35% wood content, but an increase with further addition of wood. Moisture content had only a minor influence on the mechanical and water absorption properties despite the noted severe moisture sensitivity of TPU, which usually leads to decline in mechanical properties. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46344.  相似文献   

7.
The effect of epoxy resin on mechanical and Rheological properties, and moisture absorption of wood flour polypropylene composites (WPCs) were investigated. The reactive mixing of epoxy resin with 30, and 40 wt% wood flour and polypropylene (PP) was carried out in twin screw extruder with a special screw elements arrangement. PP grafted maleic anhydrides (MPP) were used as coupling agent to improve the interfacial interactions of wood flour, epoxy resin, and PP. The tensile strength of composites decreased, and elastic modulus and moisture absorption increased with increasing epoxy resin content. The complex viscosity η* increased with increasing epoxy resin content of composites, and a synergistic effect in increasing the η* was observed at 3 wt% resin. The epoxy resin modified wood‐PP composites that chemically coupled by MPP showed minimum water absorption with highest elastic modulus. The experimental oscillation rheologyical data were used to drive a model to predict the flow behavior of WPCs, in a wide range of frequencies. POLYM. ENG. SCI., 47:2041–2048, 2007. © 2007 Society of Plastics Engineers  相似文献   

8.
The primary objectives of the study were to characterize the critical properties of wood flour produced using highly deteriorated beetle‐killed spruce for wood‐plastic composite (WPC) production and evaluate important mechanical and physical properties of WPC extruded using an industry standard formulation. Chemical composition analysis indicated no significant differences in wood constituents between highly deteriorated and sound wood. Preliminary investigation with Fourier transform infrared spectroscopy (FTIR), however, indicated partial degradation or depolymerization of carbohydrate components in highly deteriorated wood compared to sound wood from green trees; effects of these changes could be seen in cell collapse and poor interaction between thermoplastic matrix and deteriorated wood fiber. Physical and mechanical properties of extruded WPCs manufactured from highly deteriorated material were comparable to WPC properties produced using pine wood flour that served as a control material. POLYM. ENG. SCI., 2009. © 2008 Society of Plastics Engineers  相似文献   

9.
Coextruded recycled polyethylene and wood‐flour composites with core–shell structure were manufactured using a pilot‐scale coextrusion line. The influence of wood loadings and thickness of the shell layer and core quality on mechanical and water absorption properties of the composites were investigated. Core–shell structured profile can significantly improve flexural and impact strengths of composites especially when a relatively weak core was used. However, the coextruded profile with unreinforced shell may have a reduced modulus when a strong core was used. The shell layer also protected coextruded composites from long‐term moisture uptaking, leading to improved dimensional stability compared with the corresponding un‐coextruded controls. When the shell thickness was fixed, less wood loading in the shell layer did not cause obvious flexural modulus and dimension change but improved impact strength and water resistance of the coextruded composites. When wood loading in the shell layer was fixed, increased shell thickness improved impact strength but affected modulus negatively. Thickened shell layer helped reduce water uptaking but did not change dimensional stability of coextruded composites remarkably. Overall enhancement of composite strength was more pronounced for the weaker core system. Thus, the coextrusion technology can be used to achieve acceptable composite properties even with a relatively weak core system—offering an approach to use recycled, low quality plastic‐fiber blends in the core layer. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

10.
In this research, polypropylene/wood‐flour composites (WPCs) were blended with different contents of wood and/or maleated polypropylene (MAPP) and clay. We found that the addition of MAPP or clay in the formulation greatly improved the dispersion of the wood fibers in the composite; this suggested that MAPP or clay may have played the role of an adhesion promoter in the WPCs. The results obtained with clay indicate that it also acted as a flame retardant. The thermal tests carried out with the produced samples showed an increased crystallization temperature (Tc), crystallinity, and melting temperature (Tm) with wood loading. The increase of the two former parameters was explained by the incorporation of wood flour, which played the role of nucleating agent and induced the crystallization of the matrix polymer. On the other hand, the Tm increase was ascribed to the insulating properties of wood, which hindered the movement of heat conduction. The effects of UV irradiation on Tm and Tc were also examined. Tc increased with UV exposure time; this implied that UV degradation generated short chains with low molecular weight that could move easily in the bulk of the sample and, thus, catalyze early crystallization. The flexural strength and modulus increased with increasing wood‐flour content. In contrast, the impact strength and tensile strength and strain decreased with increasing wood‐flour content. All of these changes were related to the level of dispersion of the wood flour in the polymeric matrix. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
This article presents the effects of coupling agent and nanoclay (NC) on some properties of wood flour/polypropylene composites. The composites with different NC and maleic anhydride grafted polypropylene (MAPP) contents were fabricated by melt compounding in a twin‐screw extruder and then by injection molding. The mass ratio of the wood flour to polymer was 40/60 (w/w). Results showed that applying MAPP on the surface of the wood flour can promote filler polymer interaction, which, in turn, would improve mechanical properties of the composite as well as its water uptake and thermal stability. Composite voids and the lumens of the fibers were filled with NC, which prevented the penetration of water by the capillary action into the deeper parts of composite. Therefore, the water absorption in composites fabricated using NC was significantly reduced. Scanning electron microscopy has shown that the treatment of composites with 5 wt% MAPP, promotes better fiber–matrix interaction, resulting in a few numbers of pull‐out traces. In all cases, the degradation temperatures shifted to higher values after using MAPP. The largest improvement on the thermal stability of composites was achieved when NC was added. POLYM. ENG. SCI., 2011. © 2010 Society of Plastics Engineers  相似文献   

12.
《Polymer Composites》2017,38(10):2312-2320
In order to improve the hydrophilicity of ammonium polyphosphate (APP), as well as its compatibility with composite matrix, in this research, beta‐cyclodextrin (β‐CD) was crosslinked by polydiphenylmethane diisocyanate (PMDI) and used as clothing to prepare microencapsulated APP (MCAPP) via polymerization in situ . Then, APP and MCAPP were mixed with wood‐flour and polypropylene to manufacture wood‐flour/polypropylene composites (WPCs) by hot pressing. Both APP and MCAPP were characterized by Fourier transform infrared spectroscopy (FTIR), X‐ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), water solubility tests, and water contact angle (WCA) tests. Limiting oxygen index (LOI) and cone calorimetry tests were used to investigate the flame retardancy of WPCs. Moreover, laser Raman spectroscopy and real‐time FTIR (RT‐FTIR) were used to explore the flame retardant mechanism. Results indicated that APP was successfully coated by the crosslinked β‐CD. MCAPP showed lower water solubility and better surface hydrophobicity, and WPC/MCAPP performed better flame retardnacy and mechanical properties. POLYM. COMPOS., 38:2312–2320, 2017. © 2015 Society of Plastics Engineers  相似文献   

13.
The usage of wood‐plastic composites (WPCs) is rapidly growing because of their many advantages. However, they still suffer from lack of strength and toughness, which can be improved by adding a small amount of glass fiber reinforcement (GFR). Tensile tests of high‐density polyethylene WPC specimens with varying amounts of wood fiber content and 5% of GFR were carried out. Significant improvements in properties were observed. J. VINYL ADDIT. TECHNOL., 2008. © 2008 Society of Plastics Engineers.  相似文献   

14.
Shuai He  Ling Zhou  Hui He 《Polymer Composites》2015,36(12):2265-2274
In this research a type of wood plastic composites (TR‐WPCs) is prepared by blending tea residue (TR) with high‐density polyethylene (HDPE). The chemical composition of TR was analyzed quantitatively. The effects of TR content, compatibilizers, and nanofillers on the structure, morphology, and mechanical properties were studied. The results showed that the stiffness of TR‐WPCs was significantly improved with the increase in TR, while the strength and toughness decreased. Scanning electron microscope indicated that the maleic anhydride grafted polyethylene as compatibilizer enhanced interface adhesion of the composites; Thermo‐gravimetric analysis and Vicat test showed that the composite made with the nanofiller could improve the heat stability and heat resistance. Differential scanning calorimetry indicated that the addition of inorganic fillers slightly influenced the crystallization behavior of the HDPE matrix. The TR with boiling water treatment could significantly improve the mechanical properties of the composites. POLYM. COMPOS., 36:2265–2274, 2015. © 2014 Society of Plastics Engineers  相似文献   

15.
Coextrusion technology makes various properties of wood plastic composites (WPCs) highly tunable. However, structural and material optimization of core‐shell shaped WPCs is needed to balance manufacturing cost, processing efficiency, and product performance. In this study, various systems of coextruded WPCs were designed and analyzed using short glass fiber (SGF)‐filled shells in combination with three core systems (i.e., weak, moderate, and strong). A comparison of the composite flexural property of the manufactured WPCs (i.e., modulus and strength) shows that SGF reinforcements in the shell layer were optimized at high SGF loading levels regardless of core qualities. Also, SGF alignments in the shell layer played an important role in determining the flexural property of the WPCs. When the shell modulus and strength were lower than these of the core, the increase of shell thickness led to reduced composite properties. On the other hand, when the shell properties were higher than the core properties, the opposite was true. Composite impact strength increased with shell thickness increase for all three core systems. However, at a given shell thickness, the impact strength decreased with the addition of SGFs in the shell. Further increase of SGFs in the shell led to somewhat increased impact strength. The structure–property relationship plots provide a design guide for optimizing performance of coextruded WPCs with various combinations of core‐shell qualities. POLYM. COMPOS., 37:824–834, 2016. © 2014 Society of Plastics Engineers  相似文献   

16.
Mercerized wood species were impregnated with N,N‐dimethylacetamide. Their Fourier transform infrared spectra then showed enhanced absorption at 1419 cm?1 (? C? /CH3), and the 1267‐cm?1 (? N? /CH3) stretching band confirmed the occurrence of a modification reaction. Thermogravimetric investigation of the resultant wood polymer composites (WPCs) indicated a better thermal stability in comparison with that of the raw wood. The dynamic Young's modulus of the WPCs was significantly increased compared with that of raw wood. After modification, analysis by scanning electron microscopy showed porous cells of raw wood filled with the polymer, which led to the better stability of WPCs. Analysis by XRD indicated that the crystallinity of WPCs increased because of an increase in the stiffness and the thermal stability of the composites. J. VINYL ADDIT. TECHNOL., 2011. © 2011 Society of Plastics Engineers  相似文献   

17.
Enzymatic hydrolysis lignin (EHL) from ethanol production was used as an additive to incorporate in the wood flour/high‐density polyethylene (HDPE) composite during the melt extrusion, and the incorporating effects on the mechanical and rheological properties of the resulting composites were investigated. The addition of EHL caused an improvement in both the tensile strength and impact strength, and a reduction in the complex viscosity of the composites as evidenced by the rotational rheometry, which suggests an increased flowability of the composite melt due to incorporation of EHL. The water absorption and swelling of the composites decreased with increasing EHL content during water immersion test. The scanning electron microscopy micrographs of EHL incorporated wood flour/high‐density polyethylene composites showed a homogeneous dispersion of wood flour and EHL in the HDPE matrix. POLYM. COMPOS., 37:379–384, 2016. © 2014 Society of Plastics Engineers  相似文献   

18.
影响聚丙烯基木塑复合材料力学性能因素   总被引:10,自引:0,他引:10  
研究了偶联剂、相容剂、木粉用量和木质填料种类对以聚丙烯(PP)为基体树脂制备小塑复合材料力学性能的影响。结果表明,以硅烷偶联剂处理木粉或直接加入相容剂均使复合材料力学性能得到提高;木粉用量的提高使复合材料冲击强度下降,弯曲强度、弯曲模量、拉伸强度则大幅提高;在分别以粒径为0.14mm木粉和0.22mm木粉、竹粉、花生壳粉、稻壳粉制备复合材料,以粒径为0.14mm木粉与PP制备的复合材料力学性能最好。  相似文献   

19.
Potassium methyl siliconate (PMS) was investigated as a new nano modifier of wood fiber and wood flour to improve the compatibility between the fiber/flour and the plastic matrix in fiber reinforced plastic composites. Before injection molding, bleached and brown pulp fibers and mixed species wood flour were pretreated in PMS solutions. The morphology of the treated and untreated fiber and flour, the compatibility of PMS‐treated fiber and flour with polyethylene (PE), and the water sorption and volumetric swell of PMS‐treated fiber/flour plastic composites in a long‐term soaking test were evaluated. Fiber and flour treated with PMS increased the compatibility between the fiber/flour and the PE matrix. The increased compatibility of PMS‐treated fiber and flour with the matrix contributed to the reduction of water sorption and, thus, increased dimensional stability. For all composites, water sorption and volumetric swell of fiber/four plastic composites decreased as the ratio of fiber to flour increased. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

20.
Compression wood (CW) is a reaction wood formed in gymnosperms in response to various growth stresses. Many of the anatomical, chemical, physical, and mechanical properties of CW differ distinctly from those of normal wood. Because of different properties, the CW is much less desirable than normal wood. This study was conducted to investigate the suitability of CW flour obtained from black pine (Pinus nigra Arnold) in the manufacture of wood plastic composite (WPC). Polypropylene (PP) and CW flour were compounded into pellets by twin‐screw extrusion, and the test specimens were prepared by injection molding. WPCs were manufactured using various weight percentages of CW flour/PP and maleic anhydride‐grafted PP (MAPP). Water absorption (WA), modulus of rupture (MOR), and modulus of elasticity (MOE) values were measured. The results showed that increasing of the CW percentage in the WPC increased WA, MOR, and MOE values. Using MAPP in the mixture improved water resistance and flexural properties. CW flour of black pine can be used for the manufacturing of WPC as a reinforcing filler. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号