首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this investigation, attempts are made to modify a high‐performance polymer such as polybenzimidazole (PBI) (service temperature ranges from ?260°C to +400°C) through high‐energy radiation and low‐pressure plasma to prepare composite with the same polymer. The PBI composites are prepared using an ultrahigh temperature resistant epoxy adhesive to join the two polymer sheets. The service temperature of this adhesive ranges from ?260°C to +370°C, and in addition, this adhesive has excellent resistance to most acids, alkalis, solvents, corrosive agents, radiation, and fire, making it extremely useful for aerospace and space applications. Prior to preparing the composite, the surface of the PBI is ultrasonically cleaned by acetone followed by its modification through high‐energy radiation for 6 h in the pool of a SLOWPOKE‐2 (safe low power critical experiment) nuclear reactor, which produces a mixed field of thermal and epithermal neutrons, energetic electrons, and protons, and γ‐rays, with a dose rate of 37 kGy/h and low‐pressure plasma through 13.56 MHz RF glow discharge for 120 s at 100 W of power using nitrogen as process gas, to essentially increase the surface energy of the polymer, leading to substantial improvement of its adhesion characteristics. Prior to joining, the polymer surfaces are characterized by estimating surface energy and electron spectroscopy for chemical analysis (ESCA). To determine the joint strength, tensile lap shear tests are performed according to ASTM D 5868–95 standard. Another set of experiments is carried out by exposing the low‐pressure plasma‐modified polymer joint under the SLOWPOKE‐2 nuclear for 6 h. Considerable increase in the joint strength is observed, when the polymer surface is modified by either high‐energy radiation or low‐pressure plasma. There is further significant increase in joint strength, when the polymer surface is first modified by low‐pressure plasma followed by exposing the joint under high‐energy radiation. To simulate with spatial conditions, the joints are exposed to cryogenic (?196°C) and high temperatures (+300°C) for 100 h. Then, tensile lap shear tests are carried out to determine the effects of these environments on the joint strength. It is observed that when these polymeric joints are exposed to these climatic conditions, the joints could retain their strength of about 95% of that of joints tested under ambient conditions. Finally, to understand the behavior of ultrahigh temperature resistant epoxy adhesive bonding of PBI, the fractured surfaces of the joints are examined by scanning electron microscope. It is observed that there is considerable interfacial failure in the case of unmodified polymer‐to‐polymer joint whereas surface‐modified polymer essentially fails cohesively within the adhesive. Therefore, this high‐performance polymer composite could be highly useful for structural applications in space and aerospace. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1959–1967, 2006  相似文献   

2.
High performance polymer, Polyether Ether Ketone (PEEK) (service temperature ?250°C to +300°C, tensile strength: 120 MPa) is gaining significant interest in aerospace and automotive industries. In this investigation, attention is given to understand adhesion properties of PEEK, when surface of the PEEK is modified by two different plasma processes (i) atmospheric pressure plasma and (ii) low pressure plasma under DC Glow Discharge. The PEEK sheets are fabricated by ultra high temperature resistant epoxy adhesive (DURALCO 4703, service temperature ?260°C to +350°C). The surface of the PEEK is modified through atmospheric pressure plasma with 30 and 60 s of exposure and low pressure plasma with 30, 60, 120, 240, and 480 s of exposure. It is observed that polar component of surface energy leading to total surface energy of the polymer increases significantly when exposed to atmospheric pressure plasma. In the case of low pressure plasma, polar component of surface energy leading to total surface energy of the polymer increases with time of exposure up to 120 s and thereafter, it deteriorates with increasing time of exposure. The fractured surface of the adhesively bonded PEEK is examined under SEM. It is observed that unmodified PEEK fails essentially from the adhesive to PEEK interface resulting in low adhesive bond strength. In the case of surface modified PEEK under atmospheric pressure plasma, the failure is entirely from the PEEK and essentially tensile failure at the end of the overlap resulting in significant increase in adhesive bond strength. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

3.
In this investigation, attempts are made to prepare high-performance nanoadhesive bonding of titanium for its essential applications to aviation and space. The high-performance nanoadhesive is prepared by dispersing silicate nanoparticles into the ultra-high-temperature-resistant epoxy adhesive at 10 wt% ratio with the matrix adhesive followed by modification of the nanoadhesive after curing under high-energy radiation for 6 h in the pool of SLOWPOKE-2 nuclear reactor with a dose rate of 37 kGy/h to promote crosslink into the adhesive. Prior to bonding, the surfaces of the titanium sheets are mechanically polished by wire brushing, ultrasonically cleaned by acetone and thereafter the titanium sheets are modified by plasma ion implantation using plasma nitriding. The titanium surface is characterized by X-ray photoelectron spectroscopy (XPS). The thermal characteristics of the epoxy adhesive and the high-performance nanoadhesive are carried out by thermal gravimetric analysis (TGA). The TGA studies clearly shows that for the basic adhesive there is a weight loss of the adhesive, however, in the case of epoxy–silicate nanoadhesive, there is almost 100% retention of weight of the adhesive, when the adhesive is heated up to 350 °C. Lap shear tensile strength of the joint increases considerably, when the titanium surface is modified by plasma-nitriding implantation. There is a further massive increase in joint strength, when the plasma-nitriding implanted titanium joint is prepared by nanosilicate–epoxy adhesive and further modification of the adhesive joint under high-energy radiation results a further significant increase in joint strength. In order to simulate with aviation and space climatic conditions, the joints are separately exposed to cryogenic (?196 °C) and elevated temperature (+300 °C) for 100 h and thermal fatigue tests of the joints are carried out under 10 cycles by exposing the joint for 2 h under the above temperatures. When the joint completely kept at ambient condition and the joint strength compared with those joints exposed to aviation and space climatic conditions, it is observed that the joint could retain 95% of the joint strength. Finally, to understand the behavior of the high-performance silicate–epoxy nanoadhesive bonding of titanium, the fractured surfaces of the joints are examined by scanning electron microscope.  相似文献   

4.
In this article, the effects of atmospheric plasma treatment on the microstructural, chemical, and mechanical behavior of epoxy‐bonded polycyanurate composites are investigated. Adhesive bond strength of plasma‐treated specimens exhibited strength increases of over 35% to that of peel‐ply and solvent‐wiped surface preparation techniques. The improvements were as much as 50% greater than those obtained using abrasive surface preparation techniques. X‐ray photoelectron spectroscopy analysis showed an increase in the surface concentration of oxygen as a function of plasma treatment passes. However, the levels were substantially lower than that of epoxy composites treated under identical conditions. In addition, the concentration of carboxyl groups (O CO), which have been associated with improved adhesive strength in epoxy‐based composites, was shown to saturate in cyanate ester composites after a much lower exposure period than what was observed when treating epoxies. The effect of plasma surface treatment on the surface morphology of the cyanate ester composite was also studied using scanning electron microscopy and atomic force microscopy. Atomic force microscopy analysis showed a progressive increase in surface roughness with treatment; however, this increase only translated into a marginal increase in surface area and is not believed to contribute significantly to adhesive strength. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

5.
Although an adhesive joint can distribute load over a larger area than a mechanical joint, requires no holes, adds very little weight to structures and has superior fatigue resistance, it requires careful surface preparation of adherends for reliable joining and low susceptibility to service environments. The load transmission capability of adhesive joints can be improved by increasing the surface free energy of the adherends with suitable surface treatments. In this study, two types of surface treatment, namely the low pressure and the atmospheric pressure plasma treatment, were performed to enhance the mechanical load transmission capabilities of carbon/epoxy composite adhesive joints. The suitable surface treatment conditions for carbon/epoxy composite adhesive joints for both low and atmospheric pressure plasma systems were experimentally investigated with respect to chamber pressure, power intensity and surface treatment time by measuring the surface free energies of the specimens. The change in surface topography of carbon/epoxy composites was measured with AFM (Atomic Force Microscopy) and quantitative surface atomic concentrations were determined with XPS (X-ray Photoelectron Spectroscopy) to investigate the failure modes of composite adhesive joints with respect to surface treatment time. From the XPS investigation of carbon/epoxy composites, it was found that the ratio of oxygen concentration to carbon concentration for both low and atmospheric pressure plasma-treated carbon/epoxy composite surfaces was maximum after about 30 s treatment time, which corresponded with the maximum load transmission capability of the composite adhesive joint.  相似文献   

6.
Abstract

Adhesion is a surface phenomenon occurring in many processes, e.g., bonding, painting or varnishing. Knowing the adhesion properties is critical for evaluating the usability or behaviour of materials during these processes. Good adhesion properties favour the processes of bonding, resulting in high strength of adhesive joints. Adhesive bonded joints are used in many industries, and the subject of this study was 7075 aluminium alloy sheet bonded joints as typically used in the aviation or construction industry. Surface free energy (SFE) can be used to determine the adhesion properties of the materials. The SFE of the tested sheets was determined with the Owens–Wendt method, which consists in determining the dispersion and polar components of SFE. The purpose of this work was to correlate the bonded joint strength of selected aluminium alloy sheets to the surface free energy of the sheets that had been subjected to degreasing only and no other prior treatment was used. Single-lap bonded joints of 7075 aluminium alloy sheets were tested. Higher joint strength was measured for the thinner sheets, while the lowest strength was measured for the thickest sheets. This suggests that the thickness of the joined parts is an important factor in the strength of bonded joints. The comparison of adhesion properties to the strength of adhesive joints of tested materials shows that there is no direct relation between good adhesion properties (i.e., high SFE) and joint strength. As for degreasing, the highest joint strength was observed for aluminium alloy sheets with the lowest SFE; the sheets which were not degreased gave the highest SFE and highest joint strength.  相似文献   

7.
This paper presents a study on the effect of surface treatments on the mechanical behavior of adhesively bonded titanium alloy joints. Several different treatments were selected for the preparation of Ti-6Al-4V alloy faying surfaces, and bonded joints were fabricated using surface-treated titanium alloy substrates and a film adhesive. Tensile tests were performed on single-lap specimens to evaluate the joint strength and to assess the failure mode, i.e. cohesive failure, adhesive (interfacial) failure or a mix of both. Contact angle measurements were also carried out, and the surface free energies of titanium alloys and the thermodynamic works of adhesion for the adhesive/titanium alloy interfaces were obtained. A three-dimensional finite element analysis was used to predict the strength of the specimens exhibiting cohesive failure. In addition, an expression of the relationship between the joint strength corresponding to interfacial failure and the thermodynamic work of adhesion was introduced based on the cohesive zone model (CZM) concept. It is shown that two surface treatments, Itro treatment and Laseridge, lead to cohesive failure and a significant increase in the joint strength, and the numerically predicted strength values are fairly close to the experimental values. These surface treatments are possible replacements for the traditional surface treatment processes. For degreasing, emery paper abrasion, atmospheric plasma treatment, sulfuric acid anodizing, nano adhesion technology and high-power lasershot, the specimens fail at the adhesive/substrate interface and the joint strength increases linearly with the thermodynamic work of adhesion as expected from our CZM-based expression.  相似文献   

8.
In this investigation surface treatment of titanium is carried out by plasma ion implantation under atmospheric pressure plasma in order to increase the adhesive bond strength. Prior to the plasma treatment, titanium surfaces were mechanically treated by sand blasting. It is observed that the contact angle of de-ionized water decreases with the grit blast treatment time. Optical microscopy and scanning electron microscopic (SEM) analysis of untreated and atmospheric plasma treated titanium are carried out to examine the surface characteristics. A substantial improvement in the surface energy of titanium is observed after the atmospheric pressure plasma treatment. The surface energy increases with increasing exposure time of atmospheric pressure plasma. The optimized time of plasma treatment suggested in this investigation results in maximum adhesive bond strength of the titanium. Unmodified and surface modified titanium sheets by atmospheric pressure plasma were adhesively bonded by high temperature resistant polyimide adhesive. The glass transition temperature of this adhesive is 310 °C and these adhesively bonded joints were cured at high temperature. A substantial improvement in adhesive bond strength was observed after atmospheric pressure plasma treatment.  相似文献   

9.
A new method for surface treating polymers and polymer composites based on gas phase sulfonation has been shown to quickly and effectively increase wettability and adhesion to epoxy. A gas mixture containing a low concentration of sulfur trioxide in nitrogen (~ 1% v/v) was used to treat the surfaces of polypropylene and polystyrene films. The sulfonated surfaces were then neutralized with ammonium hydroxide. The effectiveness of sulfonation on the adhesion of these polymers to an epoxy adhesive was investigated using mechanical testing of sandwich lap-shear specimens. The lap-shear adhesive joint strength of epoxy to sulfonated polypropylene was compared with polypropylene treated with currently accepted surface treatments including chromic acid etching and flame treatment. Sulfonation greatly improves the adhesion of polypropylene to epoxy compared with other surface treatment techniques as measured by lap-shear strength. An optimum sulfonation treatment level was shown to exist for polypropylene. For polystyrene surfaces, it was shown that while sulfonation immediately increased wettability, it did not greatly improve its adhesion to epoxy; it did, however, significantly reduce the scatter in the ultimate strength values. Excess sulfonation treatment reduced the lap-shear strength for both polymers. X-ray photoelectron spectroscopic examination of the locus of failure of tested joints has shown that failure occurs in a weak boundary layer for these surface-treated polymers.  相似文献   

10.
An improvement in the adhesion strength of polyimide/epoxy joints was obtained by (1) introducing a functional group on the polyimide surface, (2) improving the mechanical properties of the epoxy adhesive, (3) increasing the curing temperature, and (4) using polyamic acid as an adhesion‐promoting layer. The functional group on polyimide was introduced via treatment with aqueous KOH. An adhesion‐promoting layer was formed by spin coating polyamic acid onto a modified polyimide surface. The maximum adhesion strength of the polyimide/epoxy joint was obtained using polyamic acid as both the adhesion‐promoting layer and as the curing agent. The surface energy of the modified polyimide was examined using contact angle measurements and Fourier transform infrared spectroscopy, and the peel strength was determined by the T‐peel method. The peeled surfaces were analyzed using scanning electron microscopy and X‐ray photoelectron spectroscopy.© 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 812–820, 2002  相似文献   

11.
The present work deals with the problematic adhesive bonding of substrates with low surface energy. Different approaches have been explored with the aim of creating adequate adhesive joints based on polyolefinic substrate and polyurethane adhesive. The selected material under study was polypropylene (PP) as adherend, and a commercial Sikaflex®-252 polyurethane one component based structural adhesive (PU) as joint fluid. Among the diverse pre-treatments typically used to prepare surfaces prior to bonding, mechanical abrasion with emery paper of 80 grain size, the use of a chemical primer and atmospheric pressure air plasma torch (APPT) were the selected methods to facilitate the application of the PU by means of surface energy enhancement as well as to create a correct mechanical interlocking of the adherent–adhesive interface. Changes in the wettability of the polymer were evaluated by contact angle measurements following the UNE EN 828:2010. Surface energy was calculated both in terms of Owens approximation and acid–base considerations, leading to the possibility of determining a relationship between changes in surface energy and adhesion. Changes in the chemical composition of the surface were studied by X-ray photoelectron spectroscopy (XPS), electron diffraction X-Ray (EDX) probe and attenuated total multiple reflection mode infrared spectroscopy (ATR-FTIR). Morphological modifications were investigated with scanning electron microscopy (SEM). Variations in the strength of single-lap PP–PP joints with the treatments were evaluated by lap shear tests following the UNE-EN 1465:2008 standard. Experimental evidence supports the superiority of the APPT treatment to increase wettability and adhesion of polyolefinic surfaces, especially when combined with the use of a primer.  相似文献   

12.
Although an adhesive joint can distribute the load over a larger area than a mechanical joint, requires no holes, adds very little weight to the structure and has superior fatigue resistance, but it not only requires a careful surface preparation of the adherends but also is affected by service environments. In this paper, suitable conditions for surface treatments such as plasma surface treatment, mechanical abrasion, and sandblast treatment were investigated to enhance the mechanical load capabilities of carbon/epoxy composite adhesive joints. A capacitively coupled radiofrequency plasma system was used for the plasma surface treatment of carbon/epoxy composites and suitable surface treatment conditions were experimentally investigated with respect to gas flow rate, chamber pressure, power intensity, and surface treatment time by measuring the surface free energies of treated specimens. The optimal mechanical abrasion conditions with sandpapers were investigated with respect to the mesh number of sandpaper, and optimal sandblast conditions were investigated with respect to sandblast pressure and particle size by observing geometric shape changes of adherends during sandblast process. Also the failure modes of composite adhesive joints were investigated with respect to surface treatment. From the peel tests on plasma treated composite adhesive joints, it was found that all composite adhesive joints failed cohesively in the adhesive layer when the surface free energy was higher than about 40 mJ/m2, because of high adhesion strength between the plasma treated surface and the adhesive. From the peel tests on mechanically abraded composite adhesive joints, it was also found that the optimal surface roughness and adhesive thickness increased as the failure load increased.  相似文献   

13.
Although carbon fiber epoxy composite materials have excellent properties for structures, the joint in composite materials often reduces the efficiency of the composite structure because the joint is often the weakest area in the composite structure.

In this paper, the effects of the adhesive thickness and the adherend surface roughness on the static and fatigue strengths of adhesively-bonded tubular polygonal lap joints have been investigated by experimental methods. The dependencies of the static and fatigue strengths on the stacking sequences of the composite adherends were observed.

From the experimental investigations, it was found that the fatigue strength of the circular adhesively-bounded joints was quite dependent on the surface roughness of the adherends and that polygonal adhesively-bonded joints had better fatigue strength characteristics than circular adhesively-bonded joints.  相似文献   

14.
The packaging industry generates a high volume of wastes; so that, there is a high demand of biodegradable materials, which do not damage the environment. Nowadays, there is an interesting consumption of polylactic acid (PLA) due to its biodegradable features. This work focuses on the improvement of mechanical properties of PLA adhesion joints for uses in the packaging industry. In order to achieve that purpose, atmospheric plasma treatment is used to selectively modify PLA surface properties. The obtained experimental results show that the atmospheric plasma treatment is suitable to increase the mechanical performance of PLA–PLA adhesive joints. Optimum conditions for the atmospheric plasma treatment were obtained with a nozzle–substrate distance of 10 mm and an advance rate in the 100–300 mm s?1 range; for these particular conditions, the effectiveness of the surface modification is the highest. The main plasma‐acting mechanisms are microetching together with the insertion of polar groups which lead to an interesting synergy that causes a remarkable increase in mechanical properties of adhesion joints. In particular, the shear strength of untreated PLA–PLA adhesion joints is close to 50 N cm?2 and this value is increased up to values of about 168.7 N cm?2 with optimum plasma treatment conditions. This indicates that atmospheric plasma treatment is both a technical and an environmental friendly technique to improve mechanical performance of PLA adhesive joints. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42391.  相似文献   

15.
Although carbon fiber epoxy composite materials have excellent properties for structures, the joint in composite materials often reduces the efficiency of the composite structure because the joint is often the weakest area in the composite structure.

In this paper, the effects of the adhesive thickness and the adherend surface roughness on the static and fatigue strengths of adhesively-bonded tubular polygonal lap joints have been investigated by experimental methods. The dependencies of the static and fatigue strengths on the stacking sequences of the composite adherends were observed.

From the experimental investigations, it was found that the fatigue strength of the circular adhesively-bounded joints was quite dependent on the surface roughness of the adherends and that polygonal adhesively-bonded joints had better fatigue strength characteristics than circular adhesively-bonded joints.  相似文献   

16.
The effect of a pulsed laser irradiation (Nd:YVO4, 1064 nm) in air on the surface morphology and chemical composition of silicon carbide and on the adhesion with an epoxy adhesive was investigated. Scanning and transmission electron microscopies, atomic force microscopy, and X‐ray photoelectron spectroscopy revealed that the laser treatment reduced the contamination level of the surface and induced the formation of a silica‐based nanostructured columnar layer on the SiC surface. The mechanism for the formation of five different microstructural regions is described in this paper. In addition, the formation of a 5‐10‐nm‐thick graphite layer between the oxide layer and SiC was observed. The joining test with Hysol® EA9321 showed that the nanostructured columnar silica layer was completely infiltrated by the adhesive, thus leading to a significant increase in the joined specific area and a mechanical interlocking at the adhesive/substrate interface. Nevertheless, the apparent shear strength of the joined SiC samples slightly decreased after the laser processing of the surfaces from about 42 MPa for lapped SiC to about 35 MPa for laser‐nanostructured SiC. The formation of the graphite layer was found to be responsible of the poor adhesion properties of the SiC surfaces modified by the laser radiation.  相似文献   

17.
The effect of water absorption on the strength of single lap adhesive joints subjected to accelerated hygrothermal ageing (55 °C, 95% relative humidity, 800 h) was analysed. Two different variables were studied: the surface treatment of the carbon fibre/epoxy laminates (peel ply, grit blasting and atmospheric pressure plasma) and the addition of carbon nanofillers (0.5 wt% nanofibres and 0.25 wt% nanotubes) to the epoxy adhesive. The joint strength and the failure mode of the joints were investigated. Furthermore, the amount of water absorbed by the adhesive was determined.Adhesive joints with peel ply-treated laminates exhibit an increase in their strength, which is attributed to a relaxation of stresses in the adhesive/laminate interface; with grit blasting, this property remains almost constant. Plasma treatment provides the worst ageing behaviour because this treatment results in a surface with a higher surface free energy, which is more susceptible to environmental attack. The nanoreinforcement of the adhesive has a beneficial effect: it decreases the amount of absorbed water.  相似文献   

18.
The load transmission capability of adhesive joints can be improved by increasing the surface free energy of the adherends with surface treatments. In this paper, suitable plasma surface treatment conditions for carbon/epoxy composite adherend were investigated to enhance the strength of carbon/epoxy composite adhesive joints using a capacitively coupled radio-frequency plasma system. Effects of plasma surface treatment parameters on the surface free energy and adhesion strength of carbon/epoxy composite were experimentally investigated with respect to gas flow rate, chamber pressure, power intensity, and surface treatment time. Quantitative chemical bonding analysis determined with XPS (X-ray photoelectron spectroscopy) was also performed to understand the load transmission capabilities of composite adhesive joints with respect to surface treatment time.  相似文献   

19.
The mechanical and adhesive properties of epoxy formulations based on diglycidyl ether of bisphenol A cured with various aliphatic amines were evaluated in the glass state. Impact and uniaxial compression tests were used to determine the impact energy, elastic modulus and yield stress, respectively. The adhesion tests were carried out in steel–steel joints using single‐lap shear, T‐peel, and impact adhesive joints geometry. The better mechanical and adhesive behavior of the networks is obtained when exists high flexibility of chain between crosslink and/or high elastic modulus. The 1‐(2‐aminoethyl)piperazine epoxy network presents the best adhesive properties, high flexibility, and the largest impact energy. However, it possesses low elastic modulus and yield stress. Also, exhibits increases in peel strength and impact energy while reductions in lap shear strength. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

20.
An epoxy resin consisting of diglycidylether of bisphenol A (DGEBA) and methyltetrahydrophthalic anhydride (MTHPA) was cured against moulds with different surface characteristics: poly(ethylene terephthalate) (PET), perfluorinated ethylene propylene copolymer (FEP), and air. The epoxy surfaces were analysed using contact angle measurements and X-ray photoelectron spectroscopy (XPS). The results presented are interpreted in terms of differences in surface energy between the surface of the mould and the epoxy resin. With PET as the mould surface, the surface content of ester groups resulting from the anhydride increased as compared to the average bulk content. With the non-polar FEP mould, the amount of ester groups decreased instead. Shear tests on overlap joints obtained by adhesive bonding with polyurethane and epoxy adhesives showed, however, a high adhesive joint strength, both for epoxy surfaces obtained with FEP as mould, and for ground surfaces with a bulk composition. The surfaces generated in PET moulds yielded only poor adhesive joint strength. These differences in joint strength could be related to the concentration of reactive functional groups (-OH, -COOH) in the outermost surface of the cured epoxy resin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号