共查询到20条相似文献,搜索用时 0 毫秒
1.
Conjugated polymers have been the subject of many studies because of their widespread applications in electronic and optoelectronic devices. Poly(p‐phenylene vinylene) is a leading semiconducting polymer in optical applications. This work is focused on the development of thin films of poly(p‐phenylene vinylene) by spin coating and their characterization with Fourier transform infrared spectroscopy, X‐ray diffraction, and scanning electron microscopy to understand their changes. An empirical model has been developed to show the effect of the variables—the spin speed, polymer concentration, and spin time—on the film thickness. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
2.
We have investigated the optical properties of poly [2‐methoxy‐5‐(2‐ethylhexyloxy)‐1,4‐phenylene vinylene] containing oxadiazole in backbone (MEH‐OPPV) in dilute tetrahydrofuran solution and solid solution films. There is a large dihedral angle between the two adjacent monomer units in MEH‐OPPV, which restrains interchain interactions and destroys the conjugation of the polymer to result in blue shifted absorption and emission spectra. The red shifted photoluminescence (PL) peak is continuously changed in the solid solution films with increasing the concentration of MEH‐OPPV. Comparison with the dilute solution, an obvious shoulder peak at 465 nm is found in the UV–vis absorption and PL excitation (PLE) spectra of the MEH‐OPPV film. The intensity of the PLE shoulder at 465 nm is increased with the concentration of MEH‐OPPV in the solid solution films, which is connected with the aggregation of the MEH‐OPPV chains. The interchain interactions are restrained and the π‐stack aggregates of the polymer chains can not form in the MEH‐OPPV due to the large dihedral angle, and then the interchain species are effectively suppressed in the MEH‐OPPV films. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
3.
Two novel phenyl‐substituted poly(p‐phenylene vinylene) derivatives, poly{2‐[3′,4′‐(2″‐ethylhexyloxy)(3″,7″‐dimethyloctyloxy)benzene]‐1,4‐phenylenevinylene} (EDP‐PPV) and poly{2‐[3′,4′‐(2″‐ethylhexyloxy)(3″,7″‐dimethyloctyloxy)benzene]‐5‐methoxy‐1,4‐phenylenevinylene} (EDMP‐PPV), and their copolymer, poly{2‐[3′,4′‐(2″‐ethylhexyloxy)(3″,7″‐dimethyloctyloxy)benzene]‐1,4‐phenylene‐vinylene‐co‐2‐[3′,4′‐(2″‐ethylhexyloxy)(3″,7″‐dimethyloctyloxy)benzene]‐5‐methoxy‐1,4‐phenylenevinylene} (EDP‐co‐EDMP‐PPV; 4:1, 1:1, and 1:4), were successfully synthesized according to the Gilch route. The structures and properties of the monomers and the resulting conjugated polymers were characterized with 1H‐NMR, 13C‐NMR, elemental analysis, gel permeation chromatography, thermogravimetric analysis, ultraviolet–visible absorption spectroscopy, and photoluminescence and electroluminescence (EL) spectroscopy. The EL polymers possessed excellent solubility in common solvents and good thermal stability with a 5% weight loss temperature of more than 380°C. The weight‐average molecular weights and polydispersity indices of EDP‐PPV, EDMP‐PPV, and EDP‐co‐EDMP‐PPV were 1.40–2.58 × 105, and 1.19–1.52, respectively. Double‐layer light‐emitting diodes with the configuration of indium tin oxide/polymer/tris(8‐hydroxyquinoline)aluminum/Al devices were fabricated, and EDP‐co‐EDMP‐PPV (1:1) showed the highest EL performance and exhibited a maximum luminance of 1050 cd/m2 at 19.5 V. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1259–1266, 2005 相似文献
4.
The effects of platinum metal nanoparticles on a conjugated polymer were investigated by monitoring the electronic structures and measuring the electrical properties of poly(p‐phenylene vinylene) (PPV) and PPV/Pt nanocomposites films. Enhanced current density in PPV/Pt nanocomposite films was obtained by the incorporation of Pt nanoparticles into the conjugated polymer PPV. This result agrees well with our observation of an increase in the electron affinity and an increase in roughness with increasing Pt nanoparticle content. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
5.
Zhan'ao Tan Rupei Tang Erjun Zhou Youjun He Chunhe Yang Fu Xi Yongfang Li 《应用聚合物科学杂志》2008,107(1):514-521
A copolymer of dendronized poly(p‐phenylene vinylene) (PPV), poly{2‐[3′,5′‐bis (2′‐ethylhexyloxy) bnenzyloxy]‐1,4‐phenylene vinylene}‐co‐poly[2‐methoxy‐5‐(2′‐ethylhexyloxy)‐1,4‐phenylene vinylene] (BE‐co‐MEH–PPV), was synthesized with the Gilch route to improve the electroluminescence and photovoltaic properties of the dendronized PPV homopolymer. The polymer was characterized by ultraviolet–visible absorption spectroscopy, photoluminescence spectroscopy, and electrochemical cyclic voltammetry and compared with the homopolymers poly{2‐[3′, 5′‐bis(2‐ethylhexyloxy) benzyloxy‐1,4‐phenylene vinylene} (BE–PPV) and poly[2‐methoxy‐5‐(2′‐ethylhexyloxy)‐1,4‐phenylenevinylene] (MEH–PPV). Polymer light‐emitting diodes based on the polymers with the configuration of indium tin oxide (ITO)/poly(3,4‐ethylene dioxythiophene) : poly(styrene sulfonate) (PEDOT : PSS)/polymer/Ca/Al were fabricated. The electroluminescence efficiency of BE‐co‐MEH–PPV reached 1.64 cd/A, which was much higher than that of BE–PPV (0.68 cd/A) and a little higher than that of MEH–PPV (1.59 cd/A). Photovoltaic properties of the polymer were studied with the device configuration of ITO/PEDOT : PSS/polymer : [6,6J‐phenyl‐C61‐butyric acid methyl ester] (PCBM)/Mg/Al. The power conversion efficiency of the device based on the blend of BE‐co‐MEH–PPV and PCBM with a weight ratio of 1 : 3 reached 1.41% under the illumination of air mass 1.5 (AM1.5) (80 mW/cm2), and this was an improvement in comparison with 0.24% for BE–PPV and 1.32% for MEH–PPV under the same experimental conditions. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
6.
Cuong Ton‐That Geoff Stockton Matthew R Phillips Thien‐Phap Nguyen Chun Hao Huang Ala Cojocaru 《Polymer International》2008,57(3):496-501
BACKGROUND: Conjugated polymers, especially those of the poly(phenylene vinylene) (PPV) family, are promising candidates as emission material in light‐emitting devices. The aim of this work was to investigate the dependence of the luminescence properties of PPV‐based derivatives on their polymer structure, especially side groups. RESULTS: Three PPV derivatives, BEHPPV, MEHPPV and MEHSPPV, were synthesised and characterised by photoluminescence (PL) and cathodoluminescence (CL) spectroscopies in the temperature range 10–300 K. PL and CL spectra of the polymers exhibit similar luminescence peaks, which undergo a blue shift with increasing temperature. The shift in wavelength is accompanied by variations in the relative intensities of emission peaks. Both BEHPPV and MEHPPV display emission characteristics of the PPV backbone, but the peak of MEHPPV shifts to a longer wavelength in comparison with the corresponding peak of BEHPPV at the same temperature. The luminescence spectra of MEHSPPV, which has a sulfanyl incorporated in the side chain, are considerably different from those of the two other derivatives. CONCLUSIONS: The results demonstrate that the luminescence properties depend strongly on the chain conformations of the conjugated backbone, which are affected by polymer side chains. Copyright © 2007 Society of Chemical Industry 相似文献
7.
The electrical properties of a poly(p‐phenylene vinylene) (PPV) conjugated polymer using silver (Ag) as a cathode were improved by the incorporation of silicon dioxide (SiO2) nanoparticles. The current density of the Ag–PPV/SiO2 nanocomposite system was higher than that of Ag–PPV. A lower level of interfacial oxidation was found in the Ag–PPV/SiO2 nanocomposite than in Ag–PPV, confirming that a more complete elimination of residue occurred in the nanocomposite. This was due to the relatively large surface area of the PPV/SiO2 nanocomposite film and the hydrophilic surface of the SiO2 nanoparticles. The lower level of oxidation contributed to an improvement in the material's current–voltage characteristics. Morphology‐dependent current–voltage characteristics were enhanced by a large variation in the thickness of the Ag–PPV/SiO2 nanocomposite film because an increased effective field strength could be induced in the thinner regions of the film. The incorporation of SiO2 nanoparticles altered the effective film thickness and the amount of residue in the interior of the PPV without disrupting the structure of the conjugated polymer. The Ag cathode created a stable interface with the PPV film layer without causing the formation of an organic–metal complex, which would have obstructed electron injection. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献
8.
Yang Zhang Yan Yang Chang‐Chun Wang Bin Sun Ying Wang Xin‐Ying Wang Qun‐Dong Shen 《应用聚合物科学杂志》2008,110(5):3225-3233
Novel phthalocyanine amide polymers (Pc) based on 1,8-naphthalenediamine (Ar) as an aromatic amine and 1,4-diaminobutane (Al) as an aliphatic amine, were synthesized to improve the limited stabilization modes of conventional phthalocyanines. The metal-free phthalocyanines polymers (MF-Pc) were moderately soluble in DMSO only while the metalized forms (Cu&Ni-Pc) were completely insoluble. The structure of the samples was confirmed using Fourier transform infrared (FTIR), ultraviolet–visible spectrometry (UV–vis) and nuclear magnetic resonance (NMR). Additionally, the thermal stability and glass transition temperatures (Tg) were investigated by thermal gravimetric analyzer (TGA) and differential scanning calorimeter (DSC), respectively. The intercalation of the metal-free phthalocyanines, based on the aliphatic amine (MF-PcAl) and aromatic amine (MF-PcAr), into laponite from DMSO solution, was proved by X-ray diffraction (XRD). The basal space of laponite increased from 1.2 to 1.36 nm upon intercalation of MF-PcAl and extended more to 1.91 nm on using MF-PcAr as intercalant while the quaternized forms of MF-Pcs behaved likewise and could not widen the basal space of laponite to more than 1.43 nm which was attributed to the random distribution of the positive charges over the Pc chains which imposed confined arrangement inside the basal space and consequently narrower space than the attained one in the case of nonquaternized phthalocyanines. The plasticized PVC composites based on laponite treated with either MF-PcAl or MF-PcAr exhibited improved resistance to the UV radiation as revealed by the retention of the tensile strength and elongation at rupture after exposure to UV radiation for different time intervals. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
9.
Yi Xin Zonghao Huang Peipei Yang Zijiang Jiang Cheng Wang Chen Shao 《应用聚合物科学杂志》2009,114(3):1864-1869
Poly(p‐phenylene vinylene) (PPV) nanofibers with disordered, helical, and yarn morphologies were controllably prepared by the electrospinning of a cationic polyelectrolyte precursor in an ethanol solution followed by thermal conversion. Through the tuning of the precursor solution properties and processing variables, the factors affecting the morphology of PPV fibers were studied. The diameter of these PPV nanofibers decreased with a decrease in the precursor concentration, and gradual blueshifts and changes in the relative intensity of the vibronic components in photoluminescence spectra were observed. These nanofibers with excellent fluorescent properties are potentially interesting for many applications such as micro‐ and nano‐optoelectronic devices and systems. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
10.
A series of poly(p‐phenylene vinylene) (PPV) derivatives with phenylene vinylene side chains (branched PPVs), PPV0, PPV1, PPV2, and PPV3, were synthesized by the Heck coupling reaction and characterized by TGA, absorption spectra, photoluminescence (PL) spectra, and electrochemical cyclic voltammetry. The branched PPVs showed two absorption peaks in the UV–vis region, corresponding to the conjugated side chains (UV absorption) and the main chains (the visible absorption). Especially the absorption spectrum of PPV3 covers a broad wavelength range from 300 to 500 nm. Introducing the electron‐donating alkoxy substituents on the PPV main chains and increasing the content of the alkoxy groups lead to bathochromic shift of both absorption and PL spectra from PPV1 to PPV2 to PPV3. The onset oxidation potential of the branched PPVs is lower by 0.1–0.2 V than that of PPV, indicating that the electron‐donating ability of the branched PPVs enhanced in comparison with that of PPV. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
11.
Juliana MP Almeida Oriana I Avila Marcelo B Andrade Josiani C Stefanelo Adriano JG Otuka Kelly T Paula Debora T Balogh Cleber R Mendona 《Polymer International》2019,68(1):160-163
Conjugated polymers are important materials for optical applications, among which poly(p‐phenylene vinylene) (PPV) has a major role due to its applicability in sensors, organic light‐emitting diodes and large area displays. Despite advances on the synthesis of PPV‐based polymers and the improvements of their properties, its printing process, in particular involving the solid phase, remains unsuitable for the development of electro‐optical microcircuits. This paper demonstrates the printing of PPV from the solid phase in 2D micropatterns. Such an achievement was performed using laser induced forward transfer with femtosecond pulses, which allows area‐selective deposition within reduced scales as thin as ca 100 nm and 5 µm wide. Raman, fluorescence and electrochemical impedance spectroscopies confirm that the printed PPV micropatterns have the same structure, emission spectrum and conductivity as the target material, revealing the conservation of their original properties even after laser irradiation. The printing process was carried out using PPV films, overcoming the insolubility issue of this material. The optical and electrical characterization of the transferred PPV demonstrates the potential of this method for the patterning of electro‐optical microdevices, since luminescence and electrical conductivity were preserved. © 2018 Society of Chemical Industry 相似文献
12.
Two novel poly(p‐phenylene vinylene) (PPV) derivatives with conjugated thiophene side chains, P1 and P2, were synthesized by Wittig‐Horner reaction. The resulting polymers were characterized by 1H‐NMR, FTIR, GPC, DSC, TGA, UV–Vis absorption spectroscopy and cyclic voltammetry (CV). The polymers exhibited good thermal stability and film‐forming ability. The absorption spectra of P1 and P2 showed broader absorption band from 300 to 580 nm compared with poly[(p‐phenylene vinylene)‐alt‐(2‐methoxy‐5‐octyloxy‐p‐phenylene vinylene)] (P3) without conjugated thiophene side chains. Cyclic voltammograms displayed that the bandgap was reduced effectively by attaching conjugated thiophene side chains. This kind of polymer appears to be interesting candidates for solar‐cell applications. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
13.
Water‐soluble poly(p‐phenylene diamine) was chemically synthesized. Its corrosion inhibition performance was evaluated for iron corrosion in 1M HCl at various concentrations, and the results were compared with that of the monomer. The corrosion inhibition properties were evaluated by polarization techniques and electrochemical impedance spectroscopy. The results showed that poly(p‐phenylene diamine) was a more efficient corrosion inhibitor than the monomer and gave an 85% inhibition efficiency at a concentration of 50 ppm, whereas the monomer gave an efficiency of 73% at 5000 ppm. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
14.
Zhenhua Zhang Bo Peng Ping Ding Bo Liu Yuehui He Kechao Zhou Yongfang Li Chunyue Pan Yingping Zou 《应用聚合物科学杂志》2011,120(5):2534-2542
Two new alternating copolymers based on dithienyl benzotriazole segment and phenylene vinyl unit were synthesized by Heck cross coupling method. The polymers exhibited broad absorption bands (from 300 nm to 752 nm for P1 , and from 300 nm to 654 nm for P2 ) in the UV‐visible region with optical bandgap ranging between 1.6 and 1.9 eV and proper electronic energy levels measured by cyclic voltammetry. The photovoltaic properties of the polymers as electron donors with 6.6‐phenyl C61‐butyric acid methyl ester as the electron acceptor in a bulk heterojunction structures were reported. Preliminary results showed moderate power conversion efficiency of 0.36% and 0.4%, respectively, under the illumination of AM 1.5, 100 mW/cm2 with a device structure of ITO/PEDOT : PSS/polymer : PC60BM (1 : 3)/Ca/Al. Furthermore, the side chain effect on properties has also been investigated. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
15.
Narrow‐band‐gap 2,5‐thienylene‐divinylene (ThV) units were incorporated into the poly(fluorene vinylene) backbone via a Gilch reaction as an energy trap with various feed ratios; this yielded pronounced changes in the electrochemical and optical properties of the material. The energy levels of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of the polymers {poly(9,9‐di‐iso‐octylfluorene vinylene) [poly(fluorene vinylene‐co‐thiophene vinylene (FV))], C1, and C2 } were estimated to be ?5.53 to ?5.10 eV and ?2.98 to ?2.84 eV, respectively, by cyclic voltammetry measurements. In comparison with poly(FV), the HOMO energy levels of polymers poly(fluorene vinylene‐co‐thiophene vinylene (FV) (90 : 10) ( C1 ) and poly(fluorene vinylene‐co‐thiophene vinylene (FV) (80 : 20) ( C2 ) were significantly increased, but their LUMO energy levels were slightly decreased. The optical properties were investigated by absorption and emission spectra of the polymers. The good spectral overlap between the emission of poly(FV) and the absorption of polymers C1 and C2 revealed a sufficient energy transfer from the majority of 9,9‐di‐iso‐octylfluorene vinylene units to the minority of ThV units. The reduction of self‐absorption losses of polymers C1 and C2 due to spectral separation caused by the incorporation of ThV units could be indirectly confirmed by nonlinear optical (NLO) properties. The result of the NLO properties of the polymers showed that the third‐order NLO coefficients of poly(FV), C1, and C2 were 8.1 × 10?10, 1.35 × 10?9, and 1.51 × 10?9 esu, respectively. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
16.
Two poly(thiazole vinylene) derivatives, poly(4‐hexylthiazole vinylene) (P4HTzV) and poly(4‐nonylthiazole vinylene) (P4NTzV), were synthesized by Pd‐catalyzed Stille coupling method. The polymers are soluble in common organic solvents such as o‐dichlorobenzene and chloroform, and possess good thermal stability. P4HTzV and P4NTzV films exhibit broad absorption bands at 400–720 nm with an optical bandgap of 1.77 eV and 1.74 eV, respectively. The HOMO (the highest occupied molecular orbital) energy levels of P4HTzV and P4NTzV are ?5.11 and ?5.12 eV, respectively, measured by cyclic voltammetry. Preliminary results of the polymer solar cells based on P4HTzV : PC61BM ([6,6]‐phenyl‐C‐61‐butyric acid methyl ester) (1 : 1, w/w) show a power conversion efficiency of 0.21% with an open‐circuit voltage of 0.55 V and a short circuit current density of 1.11 mA cm?2, under the illumination of AM1.5G, 100 mW cm?2. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012 相似文献
17.
The synthesis of poly(2‐methoxy‐5‐n‐butoxy‐p‐phenylene vinylene) (MBPPV) via a dehydrochlorination of 2‐methoxy‐5‐n‐butoxy‐α,α′‐dichloro‐p‐xylene is described. The soluble polymer was characterized by elemental analysis, Fourier transform infrared (FTIR), 1H nuclear magnetic resonance (NMR), and UV‐visible spectroscopy. The energy gap (Eg) of the polymer was 2.53 eV determined by cyclic voltammogram. Light‐emitting diode (LED) and light‐emitting electrochemical cell (LEC) with the polymer were fabricated. The LED displayed unipolar I‐V dependence with the turn‐on voltage at 4.2 V. I‐V curve of the LEC with poly(ethylene oxide) (PEO, Mw 2 × 104) displayed mirror symmetry with the turn‐on voltage at 2.7 V, but to the device with PEO (Mw 5 × 106) no mirror symmetry was observed, the turn‐on voltages at +2.7 V, −11.5 V. The emission maximum of the polymer in chloroform was at λ = 550 nm, whereas the emission maxima of the LED at 5.2 V and the LEC at 4.8 V were at λ = 566, 569 nm, respectively. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 2180–2185, 2000 相似文献
18.
Automotive friction materials reinforced by home‐made poly (p‐phenylene benzobisoxazole) (PBO) pulp (fibrillated organic fibers) were prepared through compression molding. The friction and wear behaviors of the obtained composite materials were evaluated using a constant rotating speed type friction tester. The PBO pulp content and the testing loads showed clear influence on the tribological properties of the composites. Friction stability, wear rate, and morphology of sliding surfaces were carefully examined to investigate the effect of the pulp ingredient in the friction materials. Scanning electron microscopy was employed to study the morphology of the surface and wear particles. The significant wear reduction was achieved when the mass fraction of PBO pulp was 3%. Wear rates of the composites with 3% PBO pulp were measured over a load range from 0.3 to 1 MPa at different temperatures. The results pointed to two facts: (1) the wear rate of the friction material increased linearly with load at low temperature (below 200°C); (2) wear status varied with the testing loads at high temperature (above 250°C). © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 4032–4039, 2013 相似文献
19.
This research focuses on the syntheses of polyaniline with poly(styrenesulfonic acid) and their electrochemical behavior, including absorbance behavior and electrochemical response time of polyaniline‐poly(styrenesulfonic acid) [PANI–PSSA]. The complexes PANI–PSSA were prepared by electrochemical polymerization of monomer (aniline) with PSSA, using indium‐tin oxide (ITO) as working electrode in 1M HCl solution. Polyaniline (PANI), poly(o‐phenetidine)–poly(styrenesulfonic acid) [POP–PSSA], and poly(2‐ethylaniline)–poly(styrenesulfonic acid) [P2E‐PSSA] also were prepared by electrochemical polymerization and to be the reference samples. The products were characterized by IR, VIS, EPR, water solubility, elemental analysis, conductivity, SEM, and TEM. IR spectral studies shows that the structure of PANI–PSSA complexes is similar to that of polyaniline. EPR and visible spectra indicate the formation of polarons. The morphology of the blend were investigated by SEM and TEM, which indicate the conducting component and electrically conductive property of the polymer complexes. Elemental analysis results show that PANI–PSSA has a nitrogen to sulfur ratio (N/S) of 38%, lower than that for POP–PSSA (52%) and P2E–PSSA (41%). Conductivity of the complexes are around 10?2 S/cm, solubility of PANI–PSSA in water is 3.1 g/L. The UV‐Vis. absorbance spectra of the hybrid organic/inorganic complementary electro‐chromic device (ECD), comprising a polyaniline–poly(styrenesulfonic acid) [PANI–PSSA] complexes and tungsten oxide (WO3) thin film coupled in combination with a polymer electrolyte poly(2‐acrylamido‐2‐methyl‐propane‐sulfonic acid) [PAMPSA]. PANI–PSSA microstructure surface images have been studied by AFM. By applying a potential of ~3.0 V across the two external ITO contacts, we are able to modulate the light absorption also in the UV‐Vis region (200–900 nm) wavelength region. For example, the absorption changes from 1.20 to 0.6 at 720 nm. The complexes PANI–PSSA, POP–PSSA, and P2E–PSSA were prepared by electrochemical polymerization of monomer (aniline, o‐phenetidine, or 2‐ethylaniline) with poly(styrenesulfonic acid), using ITO as working electrode in 1M HCl solution, respectively. UV‐Vis spectra measurements shows the evidences for the dopped polyaniline system to be a highly electrochemical response time, recorded at the temperature 298 K, and the results were further analyzed on the basis of the color‐ discolor model, which is a typical of protontation systems. Under the reaction time (3 s) and monomer (aniline, o‐phenetidine, 2‐ethylaniline) concentration (0.6M) with PSSA (0.15M), the best electrochemical color and discolor time of the PANI–PSSA is slower than POP–PSSA complexes (125/125 ms; thickness, 3.00 μm) and P2E–PSSA complexes. Under the same thickness (10 μm), the best electrochemical color and discolor time of the PANI–PSSA complexes is 1500/750 ms, that is much slower than P2E–PSSA complexes (750/500 ms) and POP–PSSA complexes (500/250 ms). In film growing rate, the PANI–PSSA complexes (0.54 μm/s) are slower than P2E–PSSA complexes (0.79 μm/s) and POP–PSSA complexes (1.00 μm/s), it can be attributed to the substituted polyaniline that presence of electro‐donating (? OC2H5 or ? C2H5) group present in aniline monomer. The EPR spectra of the samples were recorded both at 298 K and 77 K, and were further analyzed on the basis of the polaron–bipolaron model. The narrower line‐width of the substituted polyaniline complexes arises due to polarons; i.e., it is proposed that charge transport take place through both polarons and bipolarons, compared to their salts can be attributed to the lower degree of structural disorder, the oxygen absorption on the polymeric molecular complexes, and due to presence of electro‐donating (? OC2H5 or ? C2H5) group present in aniline monomer. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100:4023–4044, 2006 相似文献
20.
Yingping Zou Bo Peng Bo Liu Yongfang Li Yuehui He Kechao Zhou Chunyue Pan 《应用聚合物科学杂志》2010,115(3):1480-1488
Three alternating conjugated copolymers of cyanosubstituted poly(p‐phenylene vinylene) (CN–PPV) with phenylene ethynylene and thienylene vinylene moieties, P1, P2, and P3, were synthesized via cross‐coupling polycondensation with Pd(PPh3)2Cl2 as a catalyst. Their structures were confirmed by 1H‐NMR, IR spectroscopy, elemental analysis, and gel permeation chromatography, and the thermal, photophysical, and electrochemical properties of the copolymers were also investigated. The incorporation of a triple bond into the CN–PPV backbone led to higher reduction potentials, which corresponded to lower lowest unoccupied molecular orbital energy levels. The three copolymers possessed broader absorption spectra, especially copolymer P3 with its polymerization units containing two thiophene rings, which showed the broadest absorption spectrum, from 300 to 710 nm. Their high electron affinities, broad absorptions, and relatively higher oxidation potentials make the copolymers potentially good electron‐acceptor material for use in photovoltaic devices. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献