首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The article presents the method of finding the complete equivalent circuit of two waveguides with coplanar axes coupled through a centered inclined slot in the common broad wall. The variational method based on dyadic Green's function is used for finding the parameters of the equivalent circuit. A cosinusoidal aperture field distribution is assumed. Considerable mathematical simplification is resulted from replacing the centered inclined slot by an equivalent magnetic dipole. Coupling slot characteristics are deduced, including resonant length, dominant mode scattering in both the waveguides. Numerical and experimental results for resonant lengths and scattering parameters are presented over a range of tilt angles, frequencies, and waveguide dimensions. These results have significant applications in linear waveguide arrays and coupler design. © 2010 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2011.  相似文献   

2.
In this article a novel array antenna composed of untilted slots in the narrow wall of the double‐ridge waveguide, with significantly improved cross‐polarization, is presented. In the first step, suitable radiating elements for designing a linear slot array antenna were created. An untilted slot which is created the narrow wall of the double‐ridge waveguide is suggested to be used as the radiating resonance slot. The concave and convex ridges are located under the untilted slots only. It is shown that the concave and convex double ridge waveguides can produce an orthogonal current distribution in the place of the slots. They are also placed successively to produce the required phase inversion between adjacent slots. The linear array consists of nine uniform resonant untilted slots in the double ridge waveguide and is designed at the frequency of 5 GHz using the normalized conductance of each radiating slot. Analyzing the simulation results shows that cross‐polarization of the designed array was significantly improved, it was also found that the cross‐polarization and the SLL were respectively about ?65 and ?16 dB. © 2010 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2010.  相似文献   

3.
A suitable method is introduced to excite the centreline longitudinal slot antennas. For each slot, an iris and a rectangular septum are employed at the opposite sides of the slot such that they have offset from the waveguide centreline. It is shown that to form a high performance slotted array antenna consists of the centreline longitudinal antennas, employing antenna elements where each of them is excited only by an iris or a septum is not advisable. So, employing an iris and a septum all together is proposed to excite the centreline longitudinal slot antennas. This enables one to have a better control over the characteristics of the proposed slot antennas. The performed study indicates that the proposed slot antennas can be modelled as a shunt admittance on a transmission line. In order to demonstrate the effectiveness of the proposed slot antennas, a two‐by‐three planar array is designed, constructed and tested. The efficacy of the proposed slot antennas is verified by the simulation and the measurement results.  相似文献   

4.
Waveguide‐fed slot arrays in standing wave mode have been employed successfully in space based remote sensing radars because of their high efficiency, ease of deployment and their ability to withstand the radiation environment. Although the bandwidth requirement in such systems is minimal, at Ka band and above manufacturing tolerances in the order of 1 mil (25 μm), achieved in the dip brazing process, may affect their performance. To produce designs that are less sensitive to manufacturing tolerance, genetic algorithm (GA) optimization is employed in conjunction with a full wave analysis utilizing the method‐of‐moments solution to the pertinent integral equations of slot apertures of a planar array. In this work, a single 8 × 10 sub‐array of an interferometric antenna, proposed previously for a planetary mapping application, was investigated. The array was first designed by the Elliott's procedure and subsequently the design parameters were perturbed by GA optimization using the moment method analysis. The fitness parameter is a weighted function of return loss and gain over a number of frequencies in the operating band. A matching waveguide section consisting of inductive irises is also optimized using GA and mode matching technique. Optimum designs producing nearly constant gain and good return loss over 6% bandwidth are found to be less sensitive to manufacturing tolerance than the initial Elliott design. © 2013 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2013.  相似文献   

5.
A suitable radiating element for design of linear arrays of centered longitudinal shunt slot is proposed, which allows it to largely suppress the second order beams. The proposed radiating slot consists of a centered longitudinal slot, which is cut in the broad wall of a single wiggly ridge waveguide. The wiggly ridge is placed exactly under the slot and the wiggly part is in V‐shape. It is shown that by varying the wiggle depth of the proposed slot, the amount of power coupled to the slot can be adjusted. Some Stegen's like design graphs are obtained for the proposed slot. Then, two linear arrays consist of five and six elements are designed using the obtained graphs and by neglecting the mutual coupling between slots. The arrays have Dolph‐Chebyshev distribution with 20 and 30 dB of side lobe levels. For a better comparison between the proposed slotted arrays and the conventional longitudinal shunt slot arrays, two other slotted arrays in conventional topology and with the same specifications following the well known Elliott's design procedure are designed and simulated. Comparison of the simulated results shows that the second order beams of the designed array are effectively eliminated, while the other antenna specifications are also achieved. © 2009 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2009.  相似文献   

6.
A slot antenna with wideband circular polarization (CP) array, which operates on millimeter waves band, is proposed. A four‐direction sequential rotation technique is used in the feed network to feed the 2 × 2 slot element based on waveguide. The shot element resonates at both the fundamental mode and the high‐order mode. The slot element is studied in high order mode, and the radiation lobe can be redirected by changing the size of the slot element, thus improving the multi‐lobe problem. A strong single lobe is formed in the +z‐direction by using the ground edge diffraction characteristics of the slot element in the waveguide. The designed broadband characteristics are obtained through the appropriate combination of the feed network and CP antenna. The prototype of the antenna with an overall size of 137 mm × 137 mm × 0.6 mm3 is processed and verified by experiments. The prototype of the slot array is processed and examined. The test results display that the device has good performance of |S11| < ?10 dB bandwidth of 3.72 to 6.56 GHz (2.84 GHZ, 55.25%), a 3 dB axial ratio bandwidth of approximately 4.39 to 5.43 GHz (21.18%).  相似文献   

7.
This short communication presents a substrate integrated waveguide planar cavity slotted antenna array. The proposed antenna array, excited in its TE33 higher mode, incorporates a grounded coplanar‐waveguide (CPW) CPW‐feeding excitation mechanism. The electromagnetic energy is coupled to the air through 3 × 3 slot array etched on top metallic layer. The proposed antenna operates in the X‐band for the frequency range around the 10 to 11 GHz with resonances at 10.4 and 10.8 GHz frequencies. The proposed antenna array was fabricated and tested. Experimental results show good impedance matching with enhanced radiation characteristics, in terms of peak gain, cross‐polarization level, and low back‐radiation. The proposed antenna has the advantages of low‐footprints, lightweight, high gain, low‐cost, and ease of integration with other electronic circuits. With these characteristics, the proposed antenna array can find its applications in compact wireless digital transceivers.  相似文献   

8.
This article presents a new wideband slot antenna for wireless applications at 5.8 GHz. To improve the antenna bandwidth, a new feeding mechanism based on a capacitively‐ and inductively‐coupled slot is proposed. To demonstrate this approach, an experimental antenna prototype operating at the 5.8‐GHz band was designed, fabricated, and measured. The obtained results indicate very good agreement between the numerical and experimental results. The proposed antenna achieves a 28.5% bandwidth, a 5.7‐dBi gain, and a ?15‐dB front‐to‐back ratio, which are very sufficient for broadband wireless applications. © 2005 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2006.  相似文献   

9.
A straightforward design approach is proposed to design arrays of longitudinal slots covered with dielectric slabs. The design of the arrays is accomplished via linking the slotted array antennas fed by the waveguides to a corresponding array of the loaded slots cut in an infinite ground plane and covered with dielectric slab. In this regard, the Elliott's design equations are modified for the dielectric‐covered longitudinal slotted array antennas. The introduced design equations are employed to find the final dimensions of the slot antennas while the updated mutual admittances of the corresponding array of the loaded slots are used iteratively in the design equations. Employing the introduced design equations, a two by three slotted array antenna was designed, simulated and tested. The proposed design approach is verified by the simulation and the measurement results.  相似文献   

10.
A novel technique to design a mobile phone antenna by using an ultrawideband (UWB) antenna configuration is proposed. The technique is validated with a novel printed slot antenna configuration. The slot is composed of a circle connected to a trapezoid and fed by means of a 50 Ω microstrip line connected to a patch with similar shape to the slot. An UWB antenna with size of 19 mm × 24 mm and measured ?10 dB bandwidth of 2.97‐11.32 GHz is developed based on the configuration. When the configuration is applied in a system circuit board of 60 mm × 115 mm to design a mobile phone antenna, the simulated ?6 dB bandwidths are 1.0‐1.2 GHz and 2.25‐15 GHz. To enhance antenna bandwidth, another slot with rectangular shape is etched in the ground plane, and the microstrip line is moved to the center of the circuit board and folded to distribute along the rectangular slot. The measured ?6 dB bandwidths of the mobile phone antenna are 0.69‐1.09, 1.68‐2.75, 3.45‐3.52, and 3.62‐15 GHz.  相似文献   

11.
In this article, the design and realization of waveguide filter with improved stop‐band response is presented. By inserting transversal slots at the proper position of cavities, without disturbing the field distribution of the dominant mode, the second longitudinal resonant modes are radiated out. This caused the out‐of‐band frequency response of the filter to be improved. The validity of the proposed technique is confirmed by comparison between measurement values and simulation results from the finite element method through the commercial software (high frequency structure simulator). Also, to assure electromagnetic compatibility the slot surfaces are covered by absorbing material. © 2011 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2011.  相似文献   

12.
In this article, a broadband coplanar waveguide (CPW) to rectangular waveguide power divider using the dipole slot is proposed. The power divider consists of an input CPW port and two output rectangular waveguide ports. The CPW to rectangular waveguide power divider using the dipole slot has a return loss larger than 15 dB and an insertion loss equal to 3.08–3.27 dB in the whole X‐band (8.2–12.4 GHz). Furthermore, to broaden the bandwidth, the dipole slot is replaced by the bow‐tie slot. The CPW to rectangular waveguide power divider using the bow‐tie slot yields a return loss larger than 16 dB and an insertion loss equal to 3.05–3.29 dB from 8 to 13 GHz, which exceeds the X‐band. To verify our design, power dividers that use the dipole slot or the bow‐tie slot are fabricated and measured. The measurement results of both power dividers are in good agreement with the simulation results. © 2012 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2013.  相似文献   

13.
A dual‐functional substrate‐integrated waveguide (SIW) cavity which integrates a filter and two antennas is proposed in this article. Three slots are etched to divide a single cavity into four quarter‐mode subcavities. Two equal subcavities are utilized to design a second‐order filter. Mixed coupling is induced by this slot‐etched structure, where a controllable transmission zero can be generated in the lower or upper stopband. Two unequal subcavities are utilized to design two integrated antennas. By adjusting their areas, the frequency ratio of these two antennas achieves a wide range of 0.55‐1.81. In addition, the overall port isolation of higher than 21.0 dB is obtained by optimizing slot length. The proposed design has been validated by experimental results of a fabricated prototype. With advantages of low profile, light weight, suitable isolation, and flexible design, it has potential applications for modern wireless communication.  相似文献   

14.
This article describes a new nonuniform slot antenna array in the broad wall of rectangular waveguides partially filled with a dielectric slab. The slot elements are nonuniformly spaced to achieve a higher side lobe level while the amplitude and phase of their excitations are identical. Each slot element is fed by one dielectric‐loaded rectangular waveguide with one end shorted for structural simplicity. Experimental results for an 8‐element linear slot array operating at X‐band show that the side lobe level is 15 dB over a frequency range from 9.5 GHz to 10.5 GHz. The simulated side lobe level can reach 20 dB for a 16‐element linear array. Experimental results show that the side lobe level of a slot array can be improved using nonuniform element spacing without degrading the broadside radiation and gain. © 2008 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2008.  相似文献   

15.
A virtually centered broad‐wall longitudinal slot antenna have been designed and studied using commercial Electromagnetic Simulation Software (CST Microwave Studio). The result obtained for the S21 of such an antenna has been compared with the measured data to find the accuracy of the software. Also the results obtained for the slot have been compared with the more common offset broad‐wall longitudinal slot. Different slot characteristics also have been studied by varying different slot parameters. © 2010 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2010.  相似文献   

16.
A novel broadband circularly polarized (CP) C‐shaped slot antenna fed by a coplanar waveguide is presented. The broadband CP operation can be achieved simply using a C‐shaped slot in the ground to produce orthogonal surface currents for left‐hand circular polarization. Using the semicircle‐shaped radiator patch, wide impedance bandwidth and broad axial‐ratio (AR) bandwidth can be obtained simultaneously. The measured results show that the proposed antenna can provide a 10‐dB impedance bandwidth of 105% from 2.78 to 8.92 GHz, and a 3‐dB AR bandwidth of 70.4% from 2.9 to 6.05 GHz. Finally, an antenna prototype with a reflector for unidirectional pattern applications is also developed. The proposed antenna has broader impedance and CP bandwidths but with a more compact size compared with the previous designs. © 2015 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:739–746, 2015.  相似文献   

17.
In this article, a dual‐polarized low‐profile microstrip patch antenna with U‐ or M‐shaped feed network is presented. The U‐ or M‐shaped feed network is printed on the same layer, which can achieve dual bands (5.3 and 5.8 GHz) and low profile (0.06 λg). Dual polarizations and high isolation are realized by making use of a quasi‐cross‐shaped slot feeding. Moreover, the port isolation is better than 25 dB, and the antenna gain is above 8.4 dBi for the two ports. And the cross‐polarization levels in both E and H planes are better than ‐30 dB for the two polarization ports, respectively. The design is suitable for array application in MIMO system. Details of the proposed design and experimental results are presented and well agreed.  相似文献   

18.
This article reports a high gain millimeter‐wave substrate integrated waveguide (SIW) antenna using low cost printed circuit board technology. The half elliptic slots which can provide small shunt admittance, low cross polarization level and low mutual coupling are etched on the board surface of SIW as radiation slots for large array application. Design procedure for analyzing the characteristics of proposed radiation slot, the beam‐forming structure and the array antenna are presented. As examples, an 8 × 8 and a 32 × 32 SIW slot array antennas are designed and verified by experiments. Good agreements between simulation and measured results are achieved, which shows the 8 × 8 SIW slot array antenna has a gain of 20.8 dBi at 42.5 GHz, the maximum sidelobe level of 42.5 GHz E‐plane and H‐plane radiation patterns are 22.3 dB and 22.1 dB, respectively. The 32 × 32 SIW slot array antenna has a maximum measured gain of 30.05 dBi at 42.5 GHz. At 42.3 GHz, the measured antenna has a gain of 29.6 dBi and a maximum sidelobe level of 19.89 dB and 15.0 dB for the E‐plane and H‐plane radiation patterns. © 2015 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:709–718, 2015.  相似文献   

19.
This article examines a substrate integrated waveguide (SIW) cavity‐backed circularly polarized diversity antenna. In the proposed novel antenna, parasitic patch and reconfigurable diodes are used to change polarization diversity from left hand to right hand and vice versa, respectively. In addition to, what makes distinctive proposed antenna in compared with similar works, is ability to change linear polarization from a SIW slot to circularly polarization by a parasitic patch. Chopping off two diagonally opposite corners makes the resonance frequency of the mode along this diagonal to be higher than that for the mode along the unchopped diagonal. By exciting parasitic patch with a slot along axes of it the orthogonal modes are generated which causes to CP. The comparison between simulation and measurement results validate antenna design. The measured impedance BW (VSWR < 2) for state 1 and 2 are 22.18% (11.86‐14.82 GHz) and 21.68% (11.88‐14.77 GHz), and The measured 3‐dB AR BW for states 1 and 2 are about 11.46% (11.43‐12.82 GHz) and 11.23% (11.43‐12.79 GHz), respectively. Finally, the measured maximum gain is 9.81 dBic.  相似文献   

20.
部分介质负载缝隙结构为天线性能的优化提供了额外的参数.利用模匹配与矩量法的混合方法分析了部分介质填充的矩形波导壁上的各类缝隙.将波导缝隙结构分为介质波导T型结和向半空间辐射的开路波导两个部分.用模匹配法分析T型结,矩量法分析开路波导.以缝隙上的模函数作为全域基函数,然后将T型结和开路波导进行级联从而得到缝隙结构的散射参数.利用混合方法对介质负载矩形波导上的横缝和纵缝计算得到了数值结果.与文献结果比较,验证了方法的正确性.方法避免了部分负载波导格林函数的复杂计算,从而有效地提高了分析效率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号