首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
In this study, stereocomplexed poly(lactide) (PLA) was investigated by blending linear poly(l ‐lactide) (PLLA) and tri‐block copolymer poly(d ‐lactide) ? (polyethylene glycol) ? poly(d ‐lactide) (PDLA‐PEG‐PDLA). Synthesized PDLA‐PEG‐PDLA tri‐block copolymers with different PEG and PDLA segment lengths were studied and their influences on the degree of sterecomplexation and non‐isothermal crystallization behaviour of the PLLA/PDLA‐PEG‐PDLA blend were examined in detail by DSC, XRD and polarized optical microscopy. A full stereocomplexation between PLLA and PDLA‐PEG4k‐PDLA200 could be formed when the L/D ratio ranged from 7/3 to 5/5 without the presence of PLA homocrystals. The segmental mobility and length of both PEG and PDLA are the dominating factors in the critical D/L ratio to achieve full stereocomplexation and also for nucleation and spherulite growth during the non‐isothermal crystallization process. For fixed PEG segmental length, the stereocomplexed PLA formed showed first an increasing and then a decreasing melting temperature with increasing PDLA segments due to their intrinsic stiff mobility. Furthermore, the effect of PEG segmental mobility on PLA stereocomplexation was investigated. The results clearly showed that the crystallization temperature and melting temperature of stereocomplexed‐PLA kept increasing with increasing PEG segmental length, which was due to PEG soft mobility in the tri‐block copolymers. However, PEG was not favourable for nucleation but could facilitate the spherulite growth rate. Both the PDLA and PEG segmental lengths in the tri‐block copolymers affect the crystallinity of stereocomplexed‐PLA and the stereocomplexation formation process; they have a different influence on blends prepared by solution casting or the melting method. © 2015 Society of Chemical Industry  相似文献   

2.
Two enantiomeric triblock ABA copolymers composed of poly(L ‐lactide)–poly(ethylene glycol)–poly(L ‐lactide) (PLLA–PEG–PLLA) and poly(D ‐lactide)–poly(ethylene glycol)–poly(D ‐lactide) (PDLA–PEG–PDLA) were synthesized with two different middle‐block PEG chain lengths by ring‐opening polymerization of L ‐lactide and D ‐lactide in the presence of PEG, respectively. A pair of enantiomeric triblock copolymers were combined to form a stereocomplex by a solvent‐casting method. The triblock copolymers and their stereocomplexes were characterized by 1H‐ and 13C‐NMR spectroscopy and gel permeation chromatography. Their crystalline structures and crystalline melting behaviors were analyzed by the wide‐angle X‐ray diffraction method and differential scanning calorimetry. The stereocomplex formed between a pair of enantiomeric triblock copolymers exhibited a higher crystalline melting temperature with a distinctive 3/1 helical crystalline structure. PLLA–PEG–PLLA and its stereocomplex with PDLA–PEG–PDLA were used to fabricate a series of microspheres encapsulating a model protein drug, bovine serum albumin (BSA). They were prepared by a double‐emulsion solvent‐evaporation method. The morphological aspects of the microspheres were characterized and BSA release profiles from them were investigated. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 1615–1623, 2000  相似文献   

3.
Supramolecular poly(?‐capolactone)/poly(lactide) alternating multiblock copolymers were prepared by UPy‐functionalized poly(lactide)‐b‐ poly(?‐capolactone)‐b‐ poly(lactide) copolymers. The prepared supramolecular polymers (SMPs) exhibit the characteristic properties of thermoplastic elastomers. The stereo multiblock SMPs (sc‐SMPs) were formed by blending UPy‐functionalized poly(l ‐lactide)‐b‐ PCL‐b‐ poly(l ‐lactide) (l ‐SMPs) and UPy‐functionalized poly(d ‐lactide)‐b‐ PCL‐b‐ poly(d ‐lactide) (d ‐SMPs) due to stereocomplexation of the PLLA and PDLA blocks. Sc‐SMPs with low content of d ‐SMPs (≤20%) are transparent, elastic solids, while those having high d ‐SMPs content are opaque, brittle solids. The effects of l ‐SMPs/d ‐SMPs mixing ratios on thermal, crystallization behaviors, crystal structure, mechanical and hydrophilic properties of sc‐SMPs were deeply investigated. The incorporation of UPy groups depresses the crystallization of polymer, and the stereocomplex formation accelerates the crystallization rate. The used initiator functionalized polyhedral oligomeric silsesquioxanes causes a different effect on the crystallization of PLA and PCL blocks. The tensile strength and elongation at break of l d /d d ‐SMPs (d represents the initiator diethylene glycol) are significantly larger than that of l p /d p ‐SMPs (p represents the initiator polyhedral oligomeric silsesquioxanes), and their heat resistance and hydrophilicity can be also modulated by the l ‐SMPs/d ‐SMPs mixing ratios and the different initiators. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45575.  相似文献   

4.
A series of biodegradable chitosan‐graft‐polylactide (CS‐g‐PLA) copolymers were prepared by grafting of poly(L ‐lactide) (PLLA) or poly(D ‐lactide) (PDLA) precursor to the backbone of chitosan using N,N′‐carbonyldiimidazole as coupling agent. The composition of the copolymers was varied by adjusting the chain length of PLA as well as the ratio of chitosan to PLA. The copolymers synthesized via this ‘graft‐onto’ method present interesting properties as shown by NMR and infrared spectroscopy, gel permeation chromatography and solubility tests. Hydrogels were prepared by mixing water‐soluble CS‐g‐PLLA and CS‐g‐PDLA solutions. Gelation was assigned to stereocomplexation between PLLA and PDLA blocks as evidenced by differential scanning calorimetry and wide‐angle X‐ray diffraction measurements. Thymopentin (TP5) was taken as a model drug to evaluate the potential of these CS‐g‐PLA hydrogels as drug carriers. An initial burst and a final release up to 82% of TP5 were observed from high‐performance liquid chromatography analysis. Copyright © 2011 Society of Chemical Industry  相似文献   

5.
The ring‐opening polymerization of L ‐ or D ‐lactide was realized in the presence of dihydroxyl or monomethoxy poly(ethylene glycol) (PEG) with a number‐average molecular weight of 2000. The resulting low‐molar‐mass poly(L ‐lactide) (PLLA)/PEG and poly(D ‐lactide) (PDLA)/PEG triblock and diblock copolymers were characterized with nuclear magnetic resonance (NMR), differential scanning calorimetry, size‐exclusion chromatography, and X‐ray diffractometric analysis. Bioresorbable hydrogels were successfully prepared from aqueous solutions containing both copolymers because of interactions and stereocomplexation between the PLLA and PDLA blocks. Gelation was evaluated with the tube inverting method and rheological measurements. A phase diagram was realized with gel–sol transitions as a function of concentration. The rheological properties of the hydrogels were investigated under various conditions through changes in the copolymer concentration, temperature, time, and frequency. It was concluded that the hydrogels constituted a dynamic and evolutive system because of the continuous formation/destruction of crosslinks and degradation. Further studies are underway to elucidate the degradation behavior and the potential of these substances as drug carriers or cell culture scaffolds. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
A series of triblock co‐polymers, consisting of a poly(ethylene glycol) (PEG) central block joined to two blocks of random p‐dioxanone‐co‐L ‐lactide copolymers were synthesized by ring‐opening polymerization of p‐dioxanone (PDO) and L ‐lactide (LLA) initiated by PEG in the presence of stannous 2‐ethylhexanoate catalyst. The resulting copolymers were characterized by various techniques including 1H and 13C NMR and FTIR spectroscopies, gel permeation chromatography, inherent viscosity, wide‐angle X‐ray diffractometry (WAXD) and differential scanning calorimetry (DSC). The conversion of PDO and L ‐lactide into the polymer was studied various mole ratios and at different polymerization temperature from 1H NMR spectra. Results of WAXD and DSC showed that the crystallinity of PEG macroinitiator was greatly influenced by the composition of PDO and L ‐lactide in the copolymer. The triblock copolymers with low molecular weight were soluble in water at below room temperature. © 2003 Society of Chemical Industry  相似文献   

7.
The quasiliving characteristics of the ring‐opening polymerization of ?‐caprolactone (CL) catalyzed by an organic amino calcium were demonstrated. Taking advantage of this feature, we synthesized a series of poly(?‐caprolactone) (PCL)–poly(L ‐lactide) (PLA) diblock copolymers with the sequential addition of the monomers CL and L ‐lactide. The block structure was confirmed by 1H‐NMR, 13C‐NMR, and gel permeation chromatography analysis. The crystalline structure of the copolymers was investigated by differential scanning calorimetry and wide‐angle X‐ray diffraction analysis. When the molecular weight of the PLA block was high enough, phase separation took place in the block copolymer to form PCL and PLA domains, respectively. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 2654–2660, 2006  相似文献   

8.
A biodegradable block copolymer, poly‐D ,L ‐lactide (PLA)‐co‐poly(ethylene glycol) (PEG), was prepared by the ring‐opening polymerization of lactide with stannous caprylate [Sn(Oct2)] as a catalyst; then, the PLA–PEG copolymer was made into nanoparticles by nanoprecipitation under different conditions. The average molecular weight and structure of PLA–PEG were detected by 1H‐NMR and gel permeation chromatography. The sizes and distributions of the nanoparticles were investigated with a laser particle‐size analyzer. The morphologies of the nanoparticles were examined by transmission electron microscopy. The effects of the solvent–nonsolvent system, operation conditions, and dosage of span‐80 on the sizes and distributions of the nanoparticles are discussed. The results show that acetone–water was a suitable solvent–nonsolvent system and the volume ratio of the nonsolvent phase to the solvent phase (O/W) (v/v), the concentration of PLA–PEG in the solvent phase, and the dosage of span‐80 had important effects on the particle sizes and distributions. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1884–1890, 2005  相似文献   

9.
Mixing aqueous poly(ethylene glycol)-poly(d-lactide) and poly(ethylene glycol)-poly(l-lactide) star block copolymer solutions resulted in the formation of stereocomplexed hydrogels within 1 min. A study towards the mechanism of the temperature dependent formation of stereocomplexes in the hydrogels using rheology and nuclear magnetic resonance experiments revealed that the formation of stereocomplexes is facilitated at higher temperatures, due to rearrangement in the micellar aggregates thereby exposing more PLA units available for stereocomplexation. The formed gels became temperature irreversible due to the presence of highly stable semi-crystalline stereocomplexed PLA domains. An enantiomeric mixture of 8-armed star block copolymers linked by an amide group between the poly(ethylene glycol) core and the poly(lactide) arms (PEG–(NHCO)–(PLA)8) yielded hydrogels with improved mechanical properties and stability at 37 °C in PBS compared to 8-armed star block copolymers linked by an ester group. The possibility to be formed in situ in combination with their robustness make PEG–(NHCO)–(PLA)8 hydrogels appealing materials for various biomedical applications.  相似文献   

10.
Magnetic star‐shaped amphiphilic copolymers (S‐Fe3O4‐PLA‐b‐MPEG) consisting of Fe3O4 as the core, poly(L ,D ‐lactide) (PLA) as the inner layer, and monomethyl polyethylene glycol (MPEG) as the out shell were synthesized. The syntheses included ring‐opening polymerization of L ,D ‐lactide initiated by hydroxyl modified Fe3O4 (Fe3O4‐(OH) n), followed by the esterification of the PLA with MPEG. The structure of the star block copolymers were characterized by Fourier Transform infrared spectroscopy, thermogravimetric analysis, X‐ray diffraction, transmission electron microscopy, nanoparticle size analyzer, and vibrating sample magnetometer. The nanoparticles in aqueous solution were made from the amphiphilic star copolymer. The average size of the nanoparticles was adjustable and increased with the increase of the PLA segments in the copolymer. The cytotoxicity grade of the nanoparticles was zero determined by the analysis of cytotoxicity. The nanoparticles could potentially be used as the drug vehicles for magnetic‐response controlled release. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

11.
Poly(ethylene glycol)‐poly(L ‐lactide) diblock and triblock copolymers were prepared by ring‐opening polymerization of L ‐lactide with poly(ethylene glycol) methyl ether or with poly(ethylene glycol) in the presence of stannous octoate. Molecular weight, thermal properties, and crystalline structure of block copolymers were analyzed by 1H‐NMR, FTIR, GPC, DSC, and wide‐angle X‐ray diffraction (WAXD). The composition of the block copolymer was found to be comparable to those of the reactants. Each block of the PEG–PLLA copolymer was phase separated at room temperature, as determined by DSC and WAXD. For the asymmetric block copolymers, the crystallization of one block influenced much the crystalline structure of the other block that was chemically connected to it. Time‐resolved WAXD analyses also showed the crystallization of the PLLA block became retarded due to the presence of the PEG block. According to the biodegradability test using the activated sludge, PEG–PLLA block copolymer degraded much faster than PLLA homopolymers of the same molecular weight. © 1999 John Wiley amp; Sons, Inc. J Appl Polym Sci 72: 341–348, 1999  相似文献   

12.
The poly(l ‐lactide)‐b‐poly(ethylene glycol)‐b‐poly(l ‐lactide) block copolymers (PLLA‐b‐PEG‐b‐PLLA) were synthesized in a toluene solution by the ring‐opening polymerization of 3,6‐dimethyl‐1,4‐dioxan‐2,5‐dione (LLA) with PEG as a macroinitiator or by transterification from the homopolymers [polylactide and PEG]. Two polymerization conditions were adopted: method A, which used an equimolar catalyst/initiator molar ratio (1–5 wt %), and method B, which used a catalyst content commonly reported in the literature (<0.05 wt %). Method A was more efficient in producing copolymers with a higher yield and monomer conversion, whereas method B resulted in a mixture of the copolymer and homopolymers. The copolymers achieved high molar masses and even presenting similar global compositions, the molar mass distribution and thermal properties depends on the polymerization method. For instance, the suppression of the PEG block crystallization was more noticeable for copolymer A. An experimental design was used to qualify the influence of the catalyst and homopolymer amounts on the transreactions. The catalyst concentration was shown to be the most important factor. Therefore, the effectiveness of method A to produce copolymers was partly due to the transreactions. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40419.  相似文献   

13.
Three types of copolymers were synthesized and characterized. First, triblock ABA copolymers [where A is a homopolymer of ?‐caprolactone and B is poly(ethylene glycol)] were prepared by the ring‐opening polymerization of poly(ethylene glycol) with ?‐caprolactone in the presence of stannous octoate (Sn(Oct)2). The spectral, thermal, and mechanical properties of one sample of these copolymers were studied, and it was discovered that these types of copolymers were more hydrophilic, possessed lower melting points, and had superior mechanical properties (greater toughness) than poly(?‐caprolactone). Second, triblock ABA copolymers [where A is a homopolymer of L ‐lactide and B is poly(ethylene glycol)] were prepared by the ring‐opening polymerization of poly(ethylene glycol) with L ‐lactide in the presence of Sn(Oct)2. The mechanical properties of these copolymers were studied, and it was found that they were tougher and softer than poly(L ‐lactide). Third, novel ABA triblock copolymers [where A is a copolymer of ?‐caprolactone and L ‐lactide and B is poly(ethylene glycol)] were prepared, and 1H‐NMR and 13C‐NMR spectra of these copolymers indicated a microblock structure for the two end blocks. The stress–strain behavior revealed low yields and high toughness for these copolymers. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2072–2081, 2002  相似文献   

14.
Diblock and triblock copolymers of poly‐L ‐lactide (PLLA) and polystyrene (PS) were synthesized and the mechanical properties of these copolymers studied. Free radical polymerization of styrene in the presence of 2‐mercaptoethanol as functional chain transfer agent produced mono‐functionalized PS‐blocks which were used as macroinitiators in the subsequent ring opening polymerization (ROP) of L ‐lactide to produce the diblock copolymers. Furthermore a α‐ω‐bishydroxyl functionalized PS‐block was synthesized by RAFT, which was then engaged as bifunctional initiator for the ROP of L ‐lactide to provide the triblock copolymers PLLA‐PS‐PLLA. Through the copolymerisation and high molar masses, it was possible to achieve an improved mechanical property profile, compared with pure PLLA, or the analogous blends of PLLA and PS. A weight fraction of PS of 10–30% was found to be the optimal range for improving the heat deflection temperature (HDT), as well as mechanical properties such as ultimate tensile strength or elongation at break. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

15.
BACKGROUND: Biodegradable block copolymers have attracted particular attention in both fundamental and applied research because of their unique chain architecture, biodegradability and biocompatibility. Hence, biodegradable poly[((R )‐3 ‐hydroxybutyrate)‐block‐(D ,L ‐lactide)‐block‐(ε‐caprolactone)] (PHB‐PLA‐PCL) triblock copolymers were synthesized, characterized and evaluated for their biocompatibility. RESULTS: The results from nuclear magnetic resonance spectroscopy, gel permeation chromatography and thermogravimetric analysis showed that the novel triblock copolymers were successfully synthesized. Differential scanning calorimetry and wide‐angle X‐ray diffraction showed that the crystallinity of PHB in the copolymers decreased compared with methyl‐PHB (LMPHB) oligomer precursor. Blood compatibility experiments showed that the blood coagulation time became longer accompanied by a reduced number of platelets adhering to films of the copolymers with decreasing PHB content in the triblocks. Murine osteoblast MC3T3‐E1 cells cultured on the triblock copolymer films spread and proliferated significantly better compared with their growth on homopolymers of PHB, PLA and PCL, respectively. CONCLUSION: For the first time, PHB‐PLA‐PCL triblock copolymers were synthesized using low molecular weight LMPHB oligomer as the macroinitiator through ring‐opening polymerization with D ,L ‐lactide and ε‐caprolactone. The triblock copolymers exhibited flexible properties with good biocompatibility; they could be developed into promising biomedical materials for in vivo applications. Copyright © 2008 Society of Chemical Industry  相似文献   

16.
Diblock copolymers of poly(L ‐lactide)‐block‐poly(methyl methacrylate) (PLLA‐b‐PMMA) were synthesized through a sequential two‐step strategy, which combines ring‐opening polymerization (ROP) and atom transfer radical polymerization (ATRP), using a bifunctional initiator, 2,2,2‐trichloroethanol. The trichloro‐terminated poly(L ‐lactide) (PLLA‐Cl) with high molecular weight (Mn,GPC = 1–12 × 104 g/mol) was presynthesized through bulk ROP of L ‐lactide (L ‐LA), initiated by the hydroxyl group of the double‐headed initiator, with tin(II) octoate (Sn(Oct)2) as catalyst. The second segment of the block copolymer was synthesized by the ATRP of methyl methacrylate (MMA), with PLLA‐Cl as macroinitiator and CuCl/N,N,N′,N″,N″‐pentamethyldiethylenetriamine (PMDETA) as catalyst, and dimethyl sulfoxide (DMSO) was chosen as reaction medium due to the poor solubility of the macroinitiator in conventional solvents at the reaction temperature. The trichloroethoxyl terminal group of the macroinitiator was confirmed by Fourier transform infrared spectroscopy (FTIR) and 1H‐NMR spectroscopy. The comprehensive results from GPC, FTIR, 1H‐NMR analysis indicate that diblock copolymers PLLA‐b‐PMMA (Mn,GPC = 5–13 × 104 g/mol) with desired molecular composition were obtained by changing the molar ratio of monomer/initiator. DSC, XRD, and TG analyses establish that the crystallization of copolymers is inhibited with the introduction of PMMA segment, which will be beneficial to ameliorating the brittleness, and furthermore, to improving the thermal performance. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

17.
Polystyrene terminated with benzyl alcohol units was employed as a macroinitiator for ring‐opening polymerization of ε‐caprolactone and L ‐lactide to yield AB‐ and ABC‐type block copolymers. Even though there are many reports on the diblock copolymers of poly(styrene‐block‐lactide) and poly(styrene‐block‐lactone), this is the first report on the poly(styrene‐block‐lactone‐block‐lactide) triblock copolymer consisting of two semicrystalline and degradable segments. The triblock copolymers exhibited twin melting behavior in differential scanning calorimetry (DSC) analysis with thermal transitions corresponding to each of the lactone and lactide blocks. The block derived from ε‐caprolactone also showed crystallization transitions upon cooling from the melt. In the DSC analysis, one of the triblock copolymers showed an exothermic transition well above the melting temperature upon cooling. Thermogravimetric analysis of these block copolymers showed a two‐step degradation curve for the diblock copolymer and a three‐step degradation for the triblock copolymer with each of the degradation steps associated with each segment of the block copolymers. The present study shows that it is possible to make pure triblock copolymers with two semicrystalline segments which also consist of degradable blocks. Copyright © 2009 Society of Chemical Industry  相似文献   

18.
A series of novel triblock copolymers, consisting of a poly(ethylene glycol) center block joined by two blocks of random L ‐lactide/glycolide copolymers, are synthesized and their characteristics (spectral, thermal, and mechanical) determined. Polymer compositions and structures are assessed via 1H‐NMR and 13C‐NMR spectroscopies. DSC and stress–strain behavior studies demonstrate that these copolymers are generally more amorphous, more elastic, and tougher than are poly(L ‐lactides). © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2004–2009, 1999  相似文献   

19.
Syntheses and biodegradation of statistical copolymers of D ,L ‐lactide (D ,L ‐LA) with trimethylene carbonate (TMC), rac‐1‐methyltrimethylene carbonate (1‐MTMC) and 2,2‐dimethyltrimethylene carbonate (2,2‐DTMC) were investigated at various monomer ratios using SmMe(C5Me5)2THF as an initiator at 80 °C for 24 h in toluene. Biodegradations of poly(D ,L ‐LA‐co‐racemo‐1‐MTMC) (95/5) and poly(D ,L ‐LA‐co‐2,2‐DTMC) (98/2) with a compost at 60 °C proceed rapidly. Enzymatic degradations of these polymers were also performed using cholesterol esterase, lipoprotein lipase and proteinase K. Only poly(D ,L ‐LA‐co‐TMC) was biodegraded with cholesterol esterase, while poly(TMC), poly(1‐MTMC), poly(2,2‐DTMC) and poly(D ,L ‐LA) were barely degraded with these enzymes. Biodegradations of poly(D ,L ‐LA‐co‐TMC) (87/13) and poly(D ,L ‐LA‐co‐racemo‐1‐MTMC) (95/5) are rapid using proteinase K. Physical properties of these copolymers were also described. © 2003 Society of Chemical Industry  相似文献   

20.
A series of novel degradable triarm poly(propylene oxide)‐block‐polylactide (PPO‐b‐PLA) copolymers was synthesized by ring‐opening polymerization of L ‐lactide (LLA) or D ,L ‐lactide (DLLA) using low unsaturated PPO triols as macromolecular initiator. The chemical structures of the resulting copolymers were characterized by Fourier transform infrared (FTIR), gel permeation chromatography (GPC), and proton nuclear magnetic resonance (1H‐NMR) spectroscopy. Combination of FTIR, GPC, and NMR results confirmed the formation of PPO‐b‐PLA copolymers. One glass transition was observed by differential scanning calorimetry (DSC), suggesting good miscibility between PPO and PLA segments in the copolymers. DSC and wide‐angle X‐ray diffraction demonstrated that PPO‐b‐PLLA copolymers were semicrystalline materials, and the crystallinity increased with increasing the PLLA content. In contrast, PPO‐b‐PDLLA copolymers were totally amorphous. The PPO‐b‐PLA copolymers exhibited improved thermal stability when compared with PPO polyols according to thermogravimetric analysis. The thermal degradation behavior of the copolymers depended on the composition. Polyurethane foams were prepared by crosslinking PPO and PPO‐b‐PLA copolymers using isocyanate. Alkaline degradation of the foams was investigated in 10 wt/vol % NaOH at 80°C. The results show that the novel PPO‐b‐PLA copolymers could be promising as degradable polymeric materials. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号