首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
We present a new strategy for calibration and validation of hierarchical multiscale models based on computational homogenization. The proposed strategy hinges on the concept of the experimental simulator repository (SIMEX) which provides the basis for a generic algorithmic framework in calibration and validation of multiscale models. Gradient-based and genetic algorithms are incorporated into SIMEX framework to investigate the validity of these algorithms in multiscale model calibration. The strategy is implemented using the eigendeformation-based reduced order homogenization (EHM) model and integrated into a commercial finite element package (Abaqus). Ceramic- and polymer- matrix composite problems are analyzed to study the capabilities of the proposed calibration and validation framework.  相似文献   

2.
A reduction/hyper reduction framework is presented for dramatically accelerating the solution of nonlinear dynamic multiscale problems in structural and solid mechanics. At each scale, the dimensionality of the governing equations is reduced using the method of snapshots for proper orthogonal decomposition, and computational efficiency is achieved for the evaluation of the nonlinear reduced‐order terms using a carefully designed configuration of the energy conserving sampling and weighting method. Periodic boundary conditions at the microscales are treated as linear multipoint constraints and reduced via projection onto the span of a basis formed from the singular value decomposition of Lagrange multiplier snapshots. Most importantly, information is efficiently transmitted between the scales without incurring high‐dimensional operations. In this proposed proper orthogonal decomposition–energy conserving sampling and weighting nonlinear model reduction framework, training is performed in two steps. First, a microscale hyper reduced‐order model is constructed in situ, or using a mesh coarsening strategy, in order to achieve significant speedups even in non‐parametric settings. Next, a classical offline–online training approach is performed to build a parametric hyper reduced‐order macroscale model, which completes the construction of a fully hyper reduced‐order parametric multiscale model capable of fast and accurate multiscale simulations. A notable feature of this computational framework is the minimization, at the macroscale level, of the cost of the offline training using the in situ or coarsely trained hyper reduced‐order microscale model to accelerate snapshot acquisition. The effectiveness of the proposed hyper reduction framework at accelerating the solution of nonlinear dynamic multiscale problems is demonstrated for two problems in structural and solid mechanics. Speedup factors as high as five orders of magnitude are shown to be achievable. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

3.
This paper presents a multiscale model based on a FEM×DEM approach, a method that couples discrete elements at the microscale and finite elements at the macroscale. FEM×DEM has proven to be an effective way to treat real‐scale engineering problems by embedding constitutive laws numerically obtained using discrete elements into a standard finite element framework. This proposed paper focuses on some numerical open issues of the method. Given the nonlinearity of the problem, Newton's method is required. The standard full Newton method is modified by adopting operators different from the consistent tangent matrix and by developing adhoc solution strategies. The efficiency of several existing operators is compared, and a new and original strategy is proposed, which is shown to be numerically more efficient than the existing propositions. Furthermore, a shared memory parallelization framework using OpenMP directives is introduced. The combination of these enhancements allows to overcome the FEM×DEM computational limitations, thus making the approach competitive with classical FEM in terms of stability and computational cost.  相似文献   

4.
This paper presents a finite element solver for the simulation of steady non‐Newtonian flow problems, using a regularized Bingham model, with adaptive mesh refinement capabilities. The solver is based on a stabilized formulation derived from the variational multiscale framework. This choice allows the introduction of an a posteriori error indicator based on the small scale part of the solution, which is used to drive a mesh refinement procedure based on element subdivision. This approach applied to the solution of a series of benchmark examples, which allow us to validate the formulation and assess its capabilities to model 2D and 3D non‐Newtonian flows.  相似文献   

5.
A multiscale method for 3‐D crack propagation simulation in large structures is proposed. The method is based on the extended finite element method (X‐FEM). The asymptotic behavior of the crack front is accurately modeled using enriched elements and no remeshing is required during crack propagation. However, the different scales involved in fracture mechanics problems can differ by several orders of magnitude and industrial meshes are usually not designed to account for small cracks. Enrichments are therefore useless if the crack is too small compared with the element size. To overcome this drawback, a project combining different numerical techniques was started. The first step was the implementation of a global multigrid algorithm within the X‐FEM framework and was presented in a previous paper (Eur. J. Comput. Mech. 2007; 16 :161–182). This work emphasized the high efficiency in cpu time but highlighted that mesh refinement is required on localized areas only (cracks, inclusions, steep gradient zones). This paper aims at linking the different scales by using a local multigrid approach. The coupling of this technique with the X‐FEM is described and computational aspects dealing with intergrid operators, optimal multiscale enrichment strategy and level sets are pointed out. Examples illustrating the accuracy and efficiency of the method are given. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
This study presents an isogeometric framework for incorporating representative volume element–based multiscale models into computational homogenization. First‐order finite deformation homogenization theory is derived within the framework of the method of multiscale virtual power, and Lagrange multipliers are used to illustrate the effects of considering different kinematical constraints. Using a Lagrange multiplier approach in the numerical implementation of the discrete system naturally leads to a consolidated treatment of the commonly employed representative volume element boundary conditions. Implementation of finite deformation computational strain‐driven, stress‐driven, and mixed homogenization is detailed in the context of isogeometric analysis (IGA), and performance is compared to standard finite element analysis. As finite deformations are considered, a numerical multiscale stability analysis procedure is also detailed for use with IGA. Unique implementation aspects that arise when computational homogenization is performed using IGA are discussed, and the developed framework is applied to a complex curved microstructure representing an architectured material.  相似文献   

7.
In this paper, a multiscale finite element framework is developed based on the first‐order homogenization method for fully coupled saturated porous media using an extension of the Hill‐Mandel theory in the presence of microdynamic effects. The multiscale method is employed for the consolidation problem of a 2‐dimensional saturated soil medium generated from the periodic arrangement of circular particles embedded in a square matrix, which is compared with the direct numerical simulation method. The effects of various issues, including the boundary conditions, size effects, particle arrangements, and the integral domain constraints for the microscale boundary value problem, are numerically investigated to illustrate the performance of a representative volume element in the proposed computational homogenization method of fully coupled saturated porous media. This study is aimed to clarify the effect of scale separation and size dependence, and to introduce characteristics of a proper representative volume element in multiscale modeling of saturated porous media.  相似文献   

8.
A hybrid multiscale framework is presented, which processes the material scales in a concurrent manner, borrowing features from hierarchical multiscale methods. The framework is used for the analysis of non‐linear heterogeneous materials and is capable of tackling strain localization and failure phenomena. Domain decomposition techniques, such as the ?nite element tearing and interconnecting method, are used to partition the material in a number of non‐overlapping domains and adaptive re?nement is performed at those domains that are affected by damage processes. This re?nement is performed in terms of material scale and ?nite element size. It is veri?ed that the results are independent of the chosen domain decomposition. Moreover, the multiscale analyses are validated with reference solutions obtained with a full ?ne‐scale solution procedure. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
A multiscale fatigue life prediction model is developed for heterogeneous materials. The proposed model combines a two‐scale asymptotic homogenization approach in time with a ‘block cycle jump’ technique into a unified temporal multiscale framework that can be effectively utilized for arbitrary material architectures and constitutive equations of microphases. The unified temporal multiscale approach in combination with a spatial multiscale approach based on the reduced order homogenization is characterized for high temperature ceramic matrix composites. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
A computational framework is developed to model and optimize the nonlinear multiscale response of three-dimensional particulate composites using an interface-enriched generalized finite element method. The material nonlinearities are associated with interfacial debonding of inclusions from a surrounding matrix which is modeled using C−1 continuous enrichment functions and a cohesive failure model. Analytic material and shape sensitivities of the homogenized constitutive response are derived and used to drive a nonlinear inverse homogenization problem using gradient-based optimization methods. Spherical and ellipsoidal particulate microstructures are designed to match a component of the homogenized stress-strain response to a desired constructed macroscopic stress-strain behavior.  相似文献   

11.
12.
This paper presents a variational multiscale residual-based stabilized finite element method for the incompressible Navier–Stokes equations. Structure of the stabilization terms is derived based on the two level scale separation furnished by the variational multiscale framework. A significant feature of the new method is that the fine scales are solved in a direct nonlinear fashion, and a definition of the stabilization tensor τ is derived via the solution of the fine-scale problem. A computationally economic procedure is proposed to evaluate the advection part of the stabilization tensor. The new method circumvents the Babuska–Brezzi (inf–sup) condition and yields a stable formulation for high Reynolds number flows. A family of equal-order pressure-velocity elements comprising 4-and 10-node tetrahedral elements and 8- and 27-node hexahedral elements is developed. Convergence rates are reported and accuracy properties of the method are presented via the lid-driven cavity flow problem.  相似文献   

13.
A computational library for multiscale modeling of material failure   总被引:1,自引:1,他引:0  
We present an open-source software framework called PERMIX for multiscale modeling and simulation of fracture in solids. The framework is an object oriented open-source effort written primarily in Fortran 2003 standard with Fortran/C++ interfaces to a number of other libraries such as LAMMPS, ABAQUS, LS-DYNA and GMSH. Fracture on the continuum level is modeled by the extended finite element method (XFEM). Using several novel or state of the art methods, the piece software handles semi-concurrent multiscale methods as well as concurrent multiscale methods for fracture, coupling two continuum domains or atomistic domains to continuum domains, respectively. The efficiency of our open-source software is shown through several simulations including a 3D crack modeling in clay nanocomposites, a semi-concurrent FE-FE coupling, a 3D Arlequin multiscale example and an MD-XFEM coupling for dynamic crack propagation.  相似文献   

14.
A multiscale computational framework is presented that provides a coupled self‐consistent system of equations involving molecular mechanics at small scales and quasi‐continuum mechanics at large scales. The proposed method permits simultaneous resolution of quasi‐continuum and atomistic length scales and the associated displacement fields in a unified manner. Interatomic interactions are incorporated into the method through a set of analytical equations that contain nanoscale‐based material moduli. These material moduli are defined via internal variables that are functions of the local atomic configuration parameters. Point defects like vacancy defects in nanomaterials perturb the atomic structure locally and generate localized force fields. Formation energy of vacancy is evaluated via interatomic potentials and minimization of this energy leads to nanoscale force fields around defects. These nanoscale force fields are then employed in the multiscale method to solve for the localized displacement fields in the vicinity of vacancies and defects. The finite element method that is developed based on the hierarchical multiscale framework furnishes a two‐level statement of the problem. It concurrently feeds information at the molecular scale, formulated in terms of the nanoscale material moduli, into the quasi‐continuum equations. Representative numerical examples are shown to validate the model and demonstrate its range of applicability. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
In this work, a numerical framework for modelling of hygrothermal ageing in laminated composites is proposed. The model consists of a macroscopic diffusion analysis based on Fick's second law coupled with a multiscale FE2 stress analysis in order to take microscopic degradation mechanisms into account. Macroscopic material points are modelled with a representative volume element with random fibre distribution. The resin is modelled as elasto‐plastic with damage, and cohesive elements are included at the fibre/matrix interfaces. The model formulations and the calibration of the epoxy model using experimental results are presented in detail. A study into the representative volume element size is conducted, and the framework is demonstrated by simulating the ageing process of a unidirectional specimen immersed in water. The influence of transient swelling stresses on microscopic failure is investigated, and failure envelopes of dry and saturated micromodels are compared. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
Interfacial damage nucleation and evolution in reinforced elastomers subjected to finite strains is modelled using the mathematical theory of homogenization based on the asymptotic expansion of unknown variables. The microscale is characterized by a periodic unit cell, which contains particles dispersed in a blend and the particle matrix interface is characterized by a cohesive law. A novel numerical framework based on the perturbed Petrov–Galerkin method for the treatment of nearly incompressible behaviour is employed to solve the resulting boundary value problem on the microscale and the deformation path of a macroscale particle is predefined as in the micro‐history recovery procedure. A fully implicit and efficient finite element formulation, including consistent linearization, is presented. The proposed multiscale framework is capable of predicting the non‐homogeneous micro‐fields and damage nucleation and propagation along the particle matrix interface, as well as the macroscopic response and mechanical properties of the damaged continuum. Examples are considered involving simple unit cells in order to illustrate the multiscale algorithm and demonstrate the complexity of the underlying physical processes. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
A micromechanics model for fiber-reinforced composites that can be used at the subscale in a multiscale computational framework is established to predict the effective nonlinear composite response. Using a fiber–matrix concentric cylinder model as the basic repeat unit to represent the composite, micromechanics is used to relate the applied composite strains to the fiber and matrix strains by a six by six transformation matrix. The resolved spatial variations of the matrix fields are found to be in good agreement with corresponding finite element analysis results. The evolution of the composite nonlinear response is assumed to be governed by two scalar, strain-based variables that are related to the extreme value of an appropriately defined matrix equivalent strain, and the matrix secant moduli are used to compute the composite secant moduli for nonlinear analysis. The results from the micromechanics model are compared well with a full finite element analysis. The predictive capability of the proposed model is illustrated by two distinct fiber-reinforced material systems, carbon and glass, for the fiber volume fraction varying from 50 to 70 %. Since fully analytical solutions are utilized for the micromechanical analysis, the proposed method offers a distinct computational advantage in a multiscale analysis and is therefore suitable for large-scale progressive damage and failure analyses of composite material structures.  相似文献   

18.
A three‐dimensional nonlocal multiscale discrete‐continuum model has been developed for modeling mechanical behavior of granular materials. In the proposed multiscale scheme, we establish an information‐passing coupling between the discrete element method, which explicitly replicates granular motion of individual particles, and a finite element continuum model, which captures nonlocal overall responses of the granular assemblies. The resulting multiscale discrete‐continuum coupling method retains the simplicity and efficiency of a continuum‐based finite element model, while circumventing mesh pathology in the post‐bifurcation regime by means of staggered nonlocal operator. We demonstrate that the multiscale coupling scheme is able to capture the plastic dilatancy and pressure‐sensitive frictional responses commonly observed inside dilatant shear bands, without employing a phenomenological plasticity model at a macroscopic level. In addition, internal variables, such as plastic dilatancy and plastic flow direction, are now inferred directly from granular physics, without introducing unnecessary empirical relations and phenomenology. The simple shear and the biaxial compression tests are used to analyze the onset and evolution of shear bands in granular materials and sensitivity to mesh density. The robustness and the accuracy of the proposed multiscale model are verified in comparisons with single‐scale benchmark discrete element method simulations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
20.
A uniform extended multiscale finite element method is developed for solving the static and dynamic problems of heterogeneous materials in elasticity. To describe the complex deformation, a multinode two‐dimensional coarse element is proposed, and a new approach is elaborated to construct the displacement base functions of the coarse element. In addition, to improve the computational accuracy, the mode base functions are introduced to consider the effect of the inertial forces of the structure for dynamic problems. Furthermore, the orthogonality between the displacement and mode base functions is proved theoretically, which indicates that the proposed multiscale method can be used for the static and dynamic analyses uniformly. Numerical experiments show that the mode base functions almost do not work for the static problems, while they can improve the computational accuracy of the dynamic problems significantly. On the other hand, it is also found that the number of the macro nodes of the multinode coarse element has a great influence on the accuracy of the numerical results for both the static and dynamic analyses. Numerical examples also indicate that the uniform extended multiscale finite element method can obtain sufficiently accurate results with less computational cost compared with the standard FEM. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号