首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study is the first to investigate the anticancer effect of isoliquiritigenin (ISL) in human cervical carcinoma HeLa cells. The results reveal that ISL inhibits HeLa cells by blocking cell cycle progression in the G2/M phase and inducing apoptosis. Blockade of cell cycle is associated with increased activation of ataxia telangiectasia‐mutated (ATM). Activation of ATM by ISL phosphorylated p53 at Serine15, resulting in increased stability of p53 by decreasing p53 and murine double minute‐2 (MDM2) interaction. In addition, ISL‐mediated G2/M phase arrest was also associated with decreases in the amounts of cyclin B, cyclin A, cdc2, and cdc25C, and increases in the phosphorylation of Chk2, cdc25C, and cdc2. The specific ATM inhibitor caffeine significantly decreased ISL‐mediated G2/M arrest by inhibiting the phosphorylation of p53 (Serine15) and Chk2. ISL induced apoptotic cell death is associated with changes in the expression of Bax and Bak, decreasing levels of Bcl‐2 and Bcl‐XL, and subsequently triggering mitochondrial apoptotic pathway. In addition, pretreatment of cells with caspase‐9 inhibitor blocked ISL‐induced apoptosis, indicating that caspase‐9 activation is involved in ISL‐mediated HeLa cell apoptosis. These findings suggest that ISL may be a promising chemopreventive agent against human uterine cervical cancer.  相似文献   

2.
Glycyrrhiza uralensis (licorice) is one of the most frequently prescribed ingredients in Oriental medicine, and licorice extract has been shown to exert anti‐carcinogenic effects. However, its use as a cancer chemopreventive agent is rather limited, due to the fact that its principal component, glycyrrhizin, is known to induce hypertension. This study determined the effects of a hexane/ethanol extract of G. uralensis (HEGU), which contains undetectable amounts of glycyrrhizin, on the apoptosis of androgen‐insensitive DU145 cells. HEGU induced apoptosis and increased the levels of cleaved caspase‐9, caspase‐7, caspase‐3 and poly (ADP‐ribose) polymerase (PARP). HEGU also induced mitochondrial membrane depolarization and cytochrome c release to the cytosol. HEGU increased the levels of Fas, death receptor 4 (DR4), cleaved caspase‐8, Mcl‐1S, and truncated Bid proteins. A caspase‐8 inhibitor suppressed HEGU‐induced apoptosis. An active fraction of HEGU was separated via column chromatography and the structure of the active compound isoangustone A was identified via 1H‐NMR and 13C‐NMR. Isoangustone A increased apoptotic cells, the cleavage of PARP and caspases, and the levels of DR4 and Mcl‐1S. Transfection with DR4 small interfering RNA attenuated HEGU‐ and isoangustone A‐induced apoptosis. These results demonstrate that the activation of DR4 contributes to HEGU‐ and isoangustone A‐induced apoptosis of DU145 cells.  相似文献   

3.
Fermented food has been always possesses upper hand compared to normal food due to its antibacterial, antioxidant, and anticancer properties. Soybeans, which have high nutritional value, are widely consumed in Korea. In this study, soybean seed powder fermented with Lactobacillus plantarum DGK‐17, which was previously isolated from kimchi, showed anticancer potential. Fermented soybean extract (FSE) resulted in morphological changes, reduction of cancer cell colony formation and apoptotic cell death of HCT‐116 colon cancer cells in a dose‐dependent manner, and IC50 value of 111 μg. FSE treatment caused reduction of cell growth in a dose‐dependent manner via release of lactate dehydrogenase. FSE treatment induced HCT‐116 apoptotic cell death as confirmed by the presence of fragmented nuclei, oxidative burst, and reduced mitochondrial membrane potential (ΔΨm). Further, FSE treatment sensitized cells to ER stress via IRE1‐α induction. FSE treatment also resulted in JNK activation, subsequently causing activation of Bax and downregulation of BCl2. Weakened mitochondrial membrane potential (ΔΨm) also caused release of Cyto C, further activating caspase‐mediated cell death. Therefore, this study reveals the apoptotic role of DGK‐17‐fermented soybean seed extract in human colon cancer HCT‐116 cells.  相似文献   

4.
We explored the mechanism of cell death of the polymethoxyflavone tangeretin (TAN) in K562 breakpoint cluster region‐abelson murine leukemia (Bcr‐Abl+) cells. Flow cytometric analysis showed that TAN arrested the cells in the G2/M phase and stimulated an accumulation of the cells in the sub‐G0 phase. TAN‐induced cell death was evidenced by poly(ADP)‐ribose polymerase cleavage, DNA laddering fragmentation, activation of the caspase cascade and downregulation of the antiapoptotic proteins Mcl‐1 and Bcl‐xL. Pretreatment with the pancaspase inhibitor Z‐VAD‐FMK_blocked caspase activation and cell cycle arrest but did not inhibit apoptosis which suggest that other cell killing mechanisms like endoplasmic reticulum (ER)‐associated cell death pathways could be involved. We demonstrated that TAN‐induced apoptosis was preceded by a rapid activation of the proapoptotic arm of the unfolded protein response, namely PKR‐like ER kinase. This was accompanied by enhanced levels of glucose‐regulated protein of 78 kDa and of spliced X‐box binding protein 1. Furthermore, TAN sensitized K562 cells to the cell killing effects of imatinib via an apoptotic mechanism. In conclusion, our results suggest that TAN is able to induce apoptosis in Bcr‐Abl+ cells via cell cycle arrest and the induction of the unfolded protein response, and has synergistic cytotoxicity with imatinib.  相似文献   

5.
Although eupafolin, a flavone found in Artemisia princeps Pampanini, has been shown to inhibit the growth of several human cancer cells, its mode of action is poorly understood. In this study, we investigated the pro‐apoptotic activities of eupafolin in human cervical carcinoma HeLa cells. It was found that eupafolin induced apoptosis in a dose‐dependent manner, as evidenced by DNA fragmentation and the accumulation of positive cells for annexin V. In addition, eupafolin triggered the activations of caspases‐3, ‐6, ‐7, ‐8, and ‐9 and the cleavages of their substrates, such as, poly (ADP‐ribose) polymerase and lamin A/C. Furthermore, treatment with eupafolin resulted in a loss of mitochondrial membrane potential (ΔΨm), increased the release of cytochrome c to the cytosol, and altered the expression levels of B‐cell lymphoma 2 (Bcl‐2) family proteins. Interestingly, caspase‐8, an initiator caspase, was activated after the loss of ΔΨm and the activations of caspases‐3 and ‐9. Moreover, treatment with z‐DEVD‐fmk (a specific caspase‐3 inhibitor) and the overexpression of Bcl‐2 prevented eupafolin‐stimulated caspase‐8 activation. Altogether, these results suggest that the eupafolin‐induced apoptosis in HeLa cells is mediated by caspase‐dependent pathways, involving caspases‐3, ‐9, and ‐8, which are initiated by the Bcl‐2‐dependent loss of ΔΨm.  相似文献   

6.
Scope: Previously, we reported that 5‐hydroxy polymethoxyflavones (5OH‐PMFs) isolated from orange, namely 5‐hydroxy‐6,7,8,3′,4′‐pentamethoxyflavone, 5‐hydroxy‐3,6,7,8,3′,4′‐hexamethoxyflavone (5HHMF) and 5‐hydroxy‐6,7,8,4′‐tetramethoxyflavone (5HTMF), potently induced apoptosis and cell‐cycle arrest in multiple human colon cancer cells. Herein, using isogenic variants of HCT116 human colon cancer cells, we investigated the effects of p53, Bax and p21 on the apoptosis and cell‐cycle arrest induced by different 5OH‐PMFs. Methods and results: Annexin V/PI co‐staining assay demonstrated that 5HHMF and 5HTMF significantly induced apoptosis in HCT116 (p53+/+) cells but not in HCT116 (p53?/?) cells. Furthermore, 5HHMF and 5HTMF significantly induced apoptosis in HCT116 (Bax+/?) cells, whereas their pro‐apoptotic effects on HCT116 (Bax?/?) cells were marginal. All three 5OH‐PMFs increased G0/G1 cell population of HCT116 (p53+/+) cells, and these effects were abolished in HCT116 (p53?/?) and HCT116 (p21?/?) cells. Immunoblotting analysis showed that 5HHMF and 5HTMF increased the levels of cleaved caspase‐3, cleaved PARP in both HCT116 (p53+/+) and HCT116 (Bax+/?) cells and these effects were much weaker in HCT116 (p53?/?) and HCT116 (Bax?/?) cells. Conclusion: Our results demonstrated that 5OH‐PMFs, especially 5HHMF and 5HTMF, induce apoptosis and cell‐cycle arrest by p53‐, Bax‐ and p21‐dependent mechanism.  相似文献   

7.
BACKGROUND: Monascus‐fermented products are among the most commonly used traditional food supplements. Dioscorea is known to exhibit anticancer properties. In this study the effects of the ethanol extract of red mold dioscorea (RMDE) on cell proliferation, cell cycle and apoptosis in human oral cancer cells were investigated. RESULTS: RMDE exercised growth inhibition on squamous cell carcinoma‐25 (SCC‐25) cells. RMDE‐mediated G2/M phase arrest was associated with the down‐regulation of NF‐κB, resulting in the inhibition of cyclin B1 and CDK1 expression; this may be the mechanism by which RMDE inhibits cancer cells. Furthermore, the proapoptotic activity of RMDE was revealed by the Annexin V‐FITC/PI double‐staining assay. In addition, the proapoptotic effect of RMDE was evident by the inhibition of Bax expression in the mitochondria, resulting in the activation of caspase‐9 and caspase‐3 and subsequent triggering of the mitochondrial apoptotic pathway. RMDE also enhanced caspase‐8 activity, indicating the involvement of the death receptor pathway in RMDE‐mediated SCC‐25 cell apoptosis. CONCLUSION: RMDE treatment inhibited the growth of SCC‐25 cells by arresting cell cycle at the G2/M phase and induced apoptosis in a time‐ and dose‐dependent manner. Therefore RMDE may be a good candidate for development as a dietary supplement against oral cancer. Copyright © 2010 Society of Chemical Industry  相似文献   

8.
We report the cytotoxicity of the ginseng saponin metabolite, Compound K (20‐O‐D‐glucopyranosyl‐20(S)‐protopanaxadiol, IH901) on various human leukemia cell lines. Compound K had the most effect on U937, a human monocytic leukemia cell line among the tested cell lines. Compound K‐treated U937 cells showed characteristics of apoptosis: an exposure of phosphatidylserine from the inner cell membrane to the outer cell membrane, the formation of apoptotic bodies and DNA fragmentation. Compound K induced apoptosis by up‐regulating Bax, disrupting the mitochondrial membrane potential, and by activating caspase 9 and caspase 3. Therefore, we suggest that Compound K inhibits U937 cell growth by inducing apoptosis through the up‐regulation of Bax and caspase activation.  相似文献   

9.
Evidence has accumulated concerning the medicinal application of Nelumbo nucifera in the treatment of various diseases. Neferine, an alkaloid from N. nucifera was found to exert cytotoxicity on liver cancer cells HepG2 in a dose-dependent manner. We evaluated its anticancer potential by studying its effect on mitochondrial membrane potential, intracellular calcium levels [Ca2+]i, cell membrane integrity, apoptotic body formation and DNA fragmentation in cultured HepG2 cells. The reactive oxygen species level has been increased upon neferine treatment with concomitant decrease in reduced glutathione. Our data further indicate reduction of ΔψM and increased [Ca2+]i during apoptosis induction by neferine with increased expression of apoptotic proteins such as Bax, Bad, cleaved forms of caspase 3, caspase 9 and PARP, with the downregulation of anti-apoptotic protein Bcl2 in HepG2 cells. Moreover, the expressions of tumour suppressor proteins p53 and PTEN were upregulated along with the downregulation of P-Akt. In addition, expression levels of TNF-α, p38 and ERK1/2 MAP kinases were increased upon neferine treatment. These results imply that mitochondrial-mediated ROS generation induced by neferine leads to caspase-dependent apoptosis in HepG2 cells.  相似文献   

10.
The flavonol quercetin, especially abundant in apple, wine, and onions, is reported to have anti‐proliferative effects in many cancer cell lines. Antioxidant or pro‐oxidant activities and kinase inhibition have been proposed as molecular mechanisms for these effects. In addition, an estrogenic activity has been observed but, at the present, it is poorly understood whether this latter activity plays a role in the quercetin‐induced anti‐proliferative effects. Here, we studied the molecular mechanisms of quercetin committed to the generation of an apoptotic cascade in cancer cells devoid or containing transfected estrogen receptor α (ERα; i.e., human cervix epitheloid carcinoma HeLa cells). Although none of tested quercetin concentrations increase reactive oxygen species (ROS) generation in HeLa cells, quercetin stimulation prevents the H2O2‐induced ROS production both in the presence and in the absence of ERα. However, this flavonoid induces the activation of p38/MAPK, leading to the pro‐apoptotic caspase‐3 activation and to the poly(ADP‐ribose) polymerase cleavage only in the presence of ERα. Notably, no down‐regulation of survival kinases (i.e., AKT and ERK) was reported. Taken together, these findings suggest that quercetin results in HeLa cell death through an ERα‐dependent mechanism involving caspase‐ and p38 kinase activation. These findings indicate new potential chemopreventive actions of flavonoids on cancer growth.  相似文献   

11.
This study is the first to investigate the anticancer effect of 6‐dehydrogingerdione (DGE), an active constituent of dietary ginger, in human breast cancer MDA‐MB‐231 and MCF‐7 cells. DGE exhibited effective cell growth inhibition by inducing cancer cells to undergo G2/M phase arrest and apoptosis. Blockade of cell cycle was associated with increased levels of p21, and reduced amounts of cyclin B1, cyclin A, Cdc2 and Cdc25C. DGE also enhanced the levels of inactivated phosphorylated Cdc2 and Cdc25C. DGE triggered the mitochondrial apoptotic pathway indicated by a change in Bax/Bcl‐2 ratios, resulting in caspase‐9 activation. We also found the generation of reactive oxygen species is a critical mediator in DGE‐induced cell growth inhibition. DGE clearly increased the activation of apoptosis signal‐regulating kinase 1 and c‐Jun N‐terminal kinase (JNK), but not extracellular signal‐regulated kinase 1/2 (ERK1/2) and p38. In addition, antioxidants vitamin C and catalase significantly decreased DGE‐mediated JNK activation and apoptosis. Moreover, blocking JNK by specific inhibitors suppressed DGE‐triggered mitochondrial apoptotic pathway. Taken together, these findings suggest that a critical role for reactive oxygen species and JNK in DGE‐mediated apoptosis of human breast cancer.  相似文献   

12.
Scope: Lunasin is an arginine‐glycine‐aspartic acid (RGD) cancer preventive peptide. The objective was to evaluate the potential of lunasin to induce apoptosis in human colon cancer cells and their oxaliplatin‐resistant (OxR) variants, and its effect on the expression of human extracellular matrix and adhesion genes. Methods and results: Various human colon cancer cell lines which underwent metastasis were evaluated in vitro using cell flow cytometry and fluorescence microscopy. Lunasin cytotoxicity to different colon cancer cells correlated with the expression of α5b1 integrin, being most potent to KM12L4 cells (IC50 = 13 μM). Lunasin arrested cell cycle at G2/M phase with concomitant increase in the expression of cyclin‐dependent kinase inhibitors p21 and p27. Lunasin (5–25 μM) activated the apoptotic mitochondrial pathway as evidenced by changes in the expressions of Bcl‐2, Bax, nuclear clusterin, cytochrome c and caspase‐3 in KM12L4 and KM12L4‐OxR. Lunasin increased the activity of initiator caspase‐9 leading to the activation of caspase‐3 and also modified the expression of human extracellular matrix and adhesion genes, downregulating integrin α5, SELE, MMP10, integrin β2 and COL6A1 by 5.01‐, 6.53‐, 7.71‐, 8.19‐ and 10.10‐fold, respectively, while upregulating COL12A1 by 11.61‐fold. Conclusion: Lunasin can be used in cases where resistance to chemotherapy developed.  相似文献   

13.
The anti-cancer effect of Boesenbergin A (BA) isolated from Boesenbergia rotunda, via the induction of apoptosis resulting from mitochondrial dysfunction was assessed in human non-small cell lung cancer (A549) cells. The apoptotic mechanisms of BA induction on cancer cells were studied in the present study for the first time. Nuclear stain, measuring the accumulation of sub-G1 cell population and DNA ladder were done to determine the apoptosis. Further investigations into the depletion of mitochondrial membrane potential and release of cytochrome c determined that BA treatment induced apoptosis via the regulation of the expression of pro-survival and pro-apoptotic Bcl-2 family members. The involvement of both intrinsic and extrinsic caspases (caspase 3/7, 9 and 8) were significantly increased. Moreover the role of free radicals was significantly found to be elevated with concomitant decrease in HSP70. In conclusion the results from the current study indicated BA could be a promising agent for the treatment of lung cancer.  相似文献   

14.
研究莲房原花青素(LSPCs)诱导肝癌Hep G2细胞凋亡的机制。利用MTT法检测LSPCs对肝癌Hep G2细胞的生长抑制作用,Hochest 33258染色观察凋亡细胞的核形态,Annexin V-FITC/PI双染流式细胞术检测细胞凋亡水平,彗星实验用来检测细胞DNA损伤,JC-1染色用来检测线粒体膜电位,Western blotting法检测细胞凋亡蛋白水平的表达。LSPCs作用细胞后,显著抑制Hep G2细胞的增殖;细胞凋亡征象明显,核染色体高度凝聚,细胞核碎裂,核固缩,染色质凝聚的细胞数从3.86%增至42.76%(p0.01);活细胞率急剧减少,而凋亡率从5.32%增至67.05%(p0.01);LSPCs诱发细胞产生DNA损伤,线粒体膜电位下降,导致Cytochromec、Caspase-3和Caspase-9蛋白的表达量增加,Bax蛋白的表达量上调,Bcl-2蛋白的表达量下调,Bax/Bcl-2的比值上升。而凋亡抑制剂Z-VAD能够削弱LSPCs对Hep G2细胞增殖的抑制作用,显著下调细胞核聚缩,抑制线粒体损伤及Caspase相关蛋白的表达量,最终阻断LSPCs的致凋亡作用。由此得出结论,LSPCs可通过线粒体介导的内源性Caspase途径诱导人肝癌细胞凋亡。  相似文献   

15.
Nonalcoholic fatty liver disease (NAFLD) is closely associated with obesity‐related metabolic complications, which caused by excess energy intake and physical inactivity apart from genetic defects. The mechanisms that promote disease progression from NAFLD to further liver injury are still unclear. We hypothesize that the progression involved “2nd hit” is strongly influenced by the type of fatty acids in diets. Flow cytometric analysis showed that medium‐chain fatty acid (MCFA) markedly decreased the percentage of late apoptotic and necrotic cells compared with long‐chain fatty acid (LCFA), and MCFA inhibited the activities of caspase‐3 and ‐9 in human liver cells with steatosis. Western blot analysis found that the levels of inflammatory markers (interleukin [IL]‐6, IL‐1‐β, and tumor necrosis factor‐α) were substantially reduced by MCFA compared with LCFA. Proteomic analysis further showed that LCFA inhibited the expression of antioxidant enzymes, and increased the expression of proteins associated with oxidative stress. It was found that LCFA (palmitate), not MCFA induced apoptosis, oxidative stress and chronic inflammatory responses in the hepatic cells with steatosis. In conclusion, reasonable selection of dietary fats has potential to translate therapeutically by ameliorating disease progression in patients with NAFLD.  相似文献   

16.
The content of several phenolic acids and flavonoids in aqueous extract (AE) and ethanol extract (EE) of daylily flower (Hemerocallis fulva L.) was analyzed. The effects of AE or EE at 0.5%, 1%, or 2% in HUVE cells against high glucose‐induced cell death, oxidative, and inflammatory damage were examined. Results showed that seven phenolic acids and seven flavonoids could be detected in AE or EE, in the range of 29 to 205 and 41 to 273 mg/100 g, respectively. Compared with the control groups, high glucose raised the activity of caspase‐3 and caspase‐8; suppressed Bcl‐2 mRNA expression and increased Bax mRNA expression; and induced HUVE cells apoptosis. The pretreatments from AE or EE at 1% or 2% reduced caspase‐3 activity and Bax mRNA expression, and enhanced cell viability. High glucose decreased glutathione content; stimulated the production of reactive oxygen species, interleukin‐6, tumor necrosis factor‐alpha, and prostaglandin E2; raised the activity of cyclooxygenase‐2 and nuclear factor kappa B p50/65 binding; and reduced the activity of glutathione peroxidase, glutathione reductase, and catalase in HUVE cells. AE pretreatments at 1% and 2% reversed these changes. These novel findings suggested that daylily flower was rich in phytochemicals, and could be viewed as a potent functional food against diabetes.  相似文献   

17.
Kaempferol is a natural flavonoid. Previous studies have reported that kaempferol has anti‐proliferation activities and induces apoptosis in many cancer cell lines. However, there are no reports on human osteosarcoma. In this study, we investigate the anti‐cancer effects and molecular mechanisms of kaempferol in human osteosarcoma cells. Our results demonstrate that kaempferol significantly reduces cell viabilities of U‐2 OS, HOB and 143B cells, especially U‐2 OS cells in a dose‐dependent manner, but exerts low cytotoxicity on human fetal osteoblast progenitor hFOB cells. Comet assay, DAPI staining and DNA gel electrophoresis confirm the effects of DNA damage and apoptosis in U‐2 OS cells. Flow cytometry detects the increase of cytoplasmic Ca2+ levels and the decrease of mitochondria membrane potential. Western blotting and fluorogenic enzymatic assay show that kaempferol treatment influences the time‐dependent expression of proteins involved in the endoplasmic reticulum stress pathway and mitochondrial signaling pathway. In addition, pretreating cells with caspase inhibitors, BAPTA or calpeptin before exposure to kaempferol increases cell viabilities. The anti‐cancer effects of kaempferol in vivo are evaluated in BALB/cnu/nu mice inoculated with U‐2 OS cells, and the results indicate inhibition of tumor growth. In conclusion, kaempferol inhibits human osteosarcoma cells in vivo and in vitro.  相似文献   

18.
19.
20.
Luo H  Rankin GO  Li Z  Depriest L  Chen YC 《Food chemistry》2011,128(2):513-519
Ovarian cancer is a significant malignancy for women in the western world, and its death rate has remained unchanged over the past 50 years, leaving room for proper chemoprevention. Kaempferol is a natural flavonoid widely distributed in fruits and vegetables, and epidemiological studies have found a negative correlation between kaempferol consumption and ovarian cancer risk. To understand the mechanism behind this negative correlation, we investigated kaempferol's ability to induce apoptosis in A2780/CP70, A2780/wt, and OVCAR-3 ovarian cancer cell lines. Kaempferol inhibited cell proliferation but did not cause necrosis in all 3 cell lines. For the apoptosis, caspase 3/7 levels were induced in a concentration-dependent manner by kaempferol treatment, with A2780/wt cells being the most responsive. This induction can be diminished by pre-treatment with a caspase-9 inhibitor, indicating an intrinsic apoptosis pathway. Western blot analysis revealed that protein levels of Bcl-x(L) were decreased in ovarian cancer cells, while p53, Bad, and Bax proteins were up-regulated by kaempferol treatment. Our data indicate that kaempferol induces apoptosis in ovarian cancer cells through regulating pro-apoptotic and anti-apoptotic protein expressions in the intrinsic apoptosis pathways, and is a good candidate for the chemoprevention of ovarian cancers in humans. Further studies in animal models and clinical trials are therefore warranted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号