首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly (styrene-acrylonitrile) (SAN)/clay nanocomposites have successfully been prepared by melt intercalation method. The hexadecyl triphenyl phosphonium bromide (P16) and cetyl pyridium chloride (CPC) are used to modify the montmorillonite (MMT). The structure and thermal stability property of the organic modified MMT are, respectively characterized by Fourier transfer infrared (FT-IR) spectra, X-ray diffraction (XRD) and thermogravimetric analysis (TGA). The results indicate that the cationic surfactants intercalate into the gallery of MMT and the organic-modified MMT by P16 and CPC has higher thermal stability than hexadecyl trimethyl ammonium bromide (C16) modified MMT. The influences of the different organic modified MMT on the structure and properties of the SAN/clay nanocomposites are investigated by XRD, transmission electronic microscopy (TEM), high-resolution electron microscopy (HREM), TGA and dynamic mechanical analysis (DMA), respectively. The results indicate that the SAN cannot intercalate into the interlayers of the pristine MMT and results in microcomposites. However, the dispersion of the organic-modified MMT in the SAN is rather facile and the SAN nanocomposites reveal an intermediate morphology, an intercalated structure with some exfoliation and the presence of small tactoids. The thermal stability and the char residue at 700°C of the SAN/clay nanocomposites have remarkably enhancements compared with pure SAN. DMA measurements show that the silicate clays improve the storage modulus and glass transition temperature (Tg) of the SAN matrix in the nanocomposites.  相似文献   

2.
The photo-oxidative behavior of the polypropylene (PP)/montmorillonite (MMT) nanocomposites and microcomposites has been investigated upon ultraviolet exposure using the technique of infrared spectroscopy. The rate of photo-oxidative degradation of PP/MMT nanocomposites is much faster than that of pure PP. The influence of pristine MMT, alkylammonium and compatibilizer were investigated, respectively. All these components can catalyze the photo-oxidation of PP matrix, in which the influence of compatibilizer and pristine MMT is primary. Moreover, the dispersion state of the clay particles in the polymer matrices has a little influence on the photo-oxidative degradation of polymer matrix. Consequently, an integrated catalysis mechanism of the photo-oxidative degradation of PP clay nanocomposite is proposed. It would provide benefit direction for the preparation and usage of polymer layered silicate nanocomposites (PLSN).  相似文献   

3.
A systematic investigation of the rheological and thermal properties of nanocomposites prepared with poly(lactic acid) (PLA), poly(butylene succinate) (PBS), and organically modified layered silicate was carried out. PLA/PBS/Cloisite 30BX (organically modified MMT) clay nanocomposites were prepared by using simple melt extrusion process. Composition of PLA and PBS polymers were fixed at a ratio of 80 to 20 by wt % for all the nanocomposites. Rheological investigations showed that high clay (> 3 wt %) contents strongly improved the viscoelastic behavior of the nanocomposites. Percolation threshold region was attained between 3 and 5 wt % of clay loadings. With the addition of clay content for these nanocomposites, liquid‐like behavior of PLA/PBS blend gradually changed to solid‐like behavior as shown by dynamic rheology. Steady shear showed that shear viscosity for the nanocomposites decreased with increasing shear rates, exhibiting shear‐thinning non‐Newtonian behavior. At higher clay concentrations, pseudo‐plastic behavior was dominant, whereas pure blend showed almost Newtonian behavior. Thermogravimetric analysis revealed that both initial degradation temperature (at a 2% weight loss) and activation energy of thermal decomposition nanocomposite containing 3 wt % of C30BX were superior to those of other nanocomposites as well as to those of PLA/PBS blend. Nanocomposite having 1 wt % of C30BX did not achieve expected level of thermal stability due to the thermal instability of the surfactant present in the organoclay. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
This study investigated the influence of montmorillonite (MMT) content on the mechanical/thermal properties of microcellular injection‐molded polylactide (PLA)/clay nanocomposites. Carbon dioxide was the blowing agent. The PLA/MMT nanocomposites were prepared by twin screw extrusion. The results showed that as MMT content is increased, tensile strength, impact strength, and cell density decrease. This is caused by the speed degradation of PLA due to the addition of MMT. MMT decreases the crystallization temperature but increases the decomposition temperature of the nanocomposites. The XRD results showed that the layer spacing of the clay increases as MMT content increases. TEM pictures showed that the MMT is well dispersed within the PLA matrix. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers.  相似文献   

5.
PLA nanocomposites based on two different clays (CLO30B and SOMMEE) at 5 and 10 wt.% clay loading were prepared by melt-blending, obtaining a good level of clay dispersion as well as considerable thermo-mechanical improvements in PLA, according to WAXS, SEM, TEM, DMTA and tensile strength analysis.Addition of clays induced PLA crystallization by nucleation, especially upon addition of SOMMEE, promoting kinetics and extent of crystallization of the polymer, especially at high clay content. Concerning the thermal and mechanical properties, the highest improvements in PLA matrix were obtained upon 10% clay addition, especially SOMMEE, becoming more noticeable with increasing temperature.An effective degradation of PLA and nanocomposites in compost at 40 °C was also achieved. It was found that addition of nanoparticles, especially SOMMEE, accelerated the degradation process of PLA, particularly at higher clay content, probably due to catalysis by the hydroxyl groups belonging to the silicate layers surface and/or to their organic modifier.  相似文献   

6.
Long Jiang  Jinwen Zhang  Michael P. Wolcott   《Polymer》2007,48(26):7632-7644
Semicrystalline polylactide (PLA) exhibits high tensile strength and modulus but very low strain-at-break and toughness. In this study, PLA nanocomposites with nano-sized precipitated calcium carbonate (NPCC) and organically modified montmorillonite (MMT) clay were prepared by melt extrusion. Morphologies, tensile mechanical properties, dynamic mechanical and rheological properties, polymer–nanoparticle interactions, and toughening mechanisms of the PLA/NPCC and PLA/MMT nanocomposites were compared. MMT and NPCC showed significantly different effects on the strength, modulus and elongation of the PLA nanocomposites. Different toughening mechanisms were first elucidated for the two types of nanocomposites based on the evidence from both macroscopic and microscopic observations. Under uniaxial tension, large quantities of microvoids were created in both PLA nanocomposites. The microvoids in PLA/NPCC caused massive crazing, while in PLA/MMT they resulted in shear yielding, particularly in the nanocomposite with 2.5 wt% MMT. The MMT stacks and platelets were found to be located between the microvoids in the extended specimens and prevented them from collapsing and coalescing.  相似文献   

7.
The characterization, biocompatibility and hydrolytic degradation of poly(butylene adipate-co-terephthalate) (PBAT) and its nanocomposites based on 10 wt.% of an unmodified sepiolite and unmodified and modified montmorillonites and fluorohectorites were studied. All nanocomposites were prepared by melt blending using an internal mixer at 140 °C, showing a good level of clay distribution and dispersion into the PBAT matrix, especially those systems based on modified clays and sepiolite. The compression tests of all nanocomposites showed significant increases in the mechanical properties of PBAT matrix, associated to a reinforcement effect of nanoclays. An effective hydrolytic degradation of PBAT and nanocomposites in a phosphate buffered solution of pH 7.0 at 37 °C was also obtained. The addition of nanoparticles tended to delay slightly the hydrolysis of the polymer matrix in the early degradation stages; afterwards the presence of nanoparticles did not affect significantly the degradation trend of the polymer. Cytotoxicity tests, protein absorption analyses and complete blood count tests indicated that nanocomposites showed good biological safety: non-cytotoxicity, higher in vitro hemocompatibility than neat PBAT and non-negative hemostatic effects after contacting with blood. In general, these results showed that all the studied PBAT based nanocomposites could be very attractive for various tissue engineering applications, particularly to bone defects.  相似文献   

8.
Various fluorinated polymers were investigated to produce polymer nanocomposites with special clays. Natural and organically treated montmorillonite clays were melt‐compounded with the polymers. Characterization by wide‐angle X‐ray scattering and transmission electron microscopy showed the separation of montmorillonite layers and the formation of polymer nanocomposites. Organically treated montmorillonite clay dispersed in poly(vinylidene fluoride) and various vinylidene fluoride copolymers and formed nanocomposites. Natural and organophilic clays were not well dispersed in other fluorinated copolymers and polyethylene. A correlation was developed for the formation of polymer–clay nanocomposite structures in chlorinated and fluorinated polymers in terms of the dielectric constant. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1061–1071, 2004  相似文献   

9.
The properties of recycled low temperature biodegradable polycaprolactone‐based thermoplastic polyurethane (rTPU), filled with different types of organically modified montmorillonite (MMT) prepared by two‐roll milling, were studied. The dependence of rTPU properties on the mastication time and clays content was determined by various structural and physical testing methods. Results show that the melt flow and mechanical properties of rTPU deteriorate with increasing of mastication time, but thermal properties were affected only slightly. rTPU/MMT composites show exfoliated or intercalated structures depending on the nature of organic modifier of clay. MMT reduces slightly rTPU tensile and melt flow properties, but accelerates hydrolytic degradation process. During degradation the weight loss and polydispersity increase significantly in the presence of MMT, but it does not accelerate crystallinity changes. The degradation of rTPU composites with higher hydrophilicity organoclays proceeds faster than that with hydrophobic ones due to the relatively higher interaction with polymer matrix. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

10.
BACKGROUND: The development of polymeric nanocomposites incorporating intercalated or exfoliated layered silicate clays into the organic matrix has been substantially motivated by the significant improvements induced by the presence of the inorganic component. Moreover, understanding and controlling the dispersion of inorganic layers into segmented polyurethane matrices by means of ionic interactions, and exploiting these interactions to enhance physicomechanical behaviour, could be of great interest in the field of polymer nanocomposites. RESULTS: New cationic polyurethane elastomers were prepared starting from poly(butylene adipate)diol (Mn = 1000 g mol?1), 4,4′‐diphenylmethane diisocyanate, 1,4‐butanediol and N‐methyldiethanolamine or N,N′‐β‐hydroxyethylpiperazine, used as potential quaternizable moieties. The characterization of the polymers was achieved using specific analyses employed for the macromolecular samples (Fourier transform infrared and 1H NMR spectroscopy, thermogravimetric analysis (TGA), gel permeation chromatography). An extension of our research on polymers reinforced with organically modified montmorillonite (OM‐MMT) in order to prepare hybrid composites with improved properties was performed and the resulting materials were characterized using TGA, X‐ray diffraction, atomic force microscopy and scanning electron microscopy. Also, the mechanical properties of the cationic polyurethane/OM‐MMT composites were investigated in comparison with the pristine ionic/non‐ionic polymers and their composites containing non‐ionic polymer blended with OM‐MMT or ionic polymer and unmodified MMT. CONCLUSION: The insertion of the organically modified clay into the polymeric matrix gave an improvement of the mechanical properties of the polyurethane composites, especially the tensile strength and stiffness of the hybrid materials. Copyright © 2009 Society of Chemical Industry  相似文献   

11.
The main goal of this work is to analyze the relationships between the extensional rheological behavior of solid nanocomposites based on high melt strength polypropylene (HMS PP) and montmorillonites (MMT) and the cellular structure and mechanical properties of foams produced from these materials. For this purpose two systems have been analyzed. The first one incorporates organomodified MMT and a compatibilizer and the second system contains natural clays and is produced without the compatibilizer. Results indicate that the extensional rheological behavior of both materials is completely different. The strain hardening of the polymer containing organomodified clays decreases as the clay content increases. As a consequence, the open cell content of this material increases with the clay content and hence, the mechanical properties get worse. However, in the materials produced with natural clays this relationship is not so clear. While no changes are detected in the extensional rheological behavior by adding these particles, the nano-filled materials show an open cell structure, opposite to the closed cell structure of the pure polymer, which is caused by the fact of having particle agglomerates with a size larger than the thickness of the cell walls and a poor compatibility between the clays and the polymer.  相似文献   

12.
Poly(vinyl alcohol) (PVA)/clay nanocomposites were synthesized using the solution intercalation method. Na ion‐exchanged clays [Na+–saponite (SPT) and Na+–montmorillonite (MMT)] and alkyl ammonium ion‐exchanged clays (C12–MMT and C12OOH–MMT) were used for the PVA nanocomposites. From the morphological studies, the Na ion‐exchanged clay is more easily dispersed in a PVA matrix than is the alkyl ammonium ion‐exchanged clay. Attempts were also made to improve both the thermal stabilities and the tensile properties of PVA/clay nanocomposite films, and it was found that the addition of only a small amount of clay was sufficient for that purpose. Both the ultimate tensile strength and the initial modulus for the nanocomposites increased gradually with clay loading up to 8 wt %. In C12OOH–MMT, the maximum enhancement of the ultimate tensile strength and the initial modulus for the nanocomposites was observed for blends containing 6 wt % organoclay. Na ion‐exchanged clays have higher tensile strengths than those of organic alkyl‐exchanged clays in PVA nanocomposites films. On the other hand, organic alkyl‐exchanged clays have initial moduli that are better than those of Na ion‐exchanged clays. Overall, the content of clay particles in the polymer matrix affect both the thermal stability and the tensile properties of the polymer/clay nanocomposites. However, a change in thermal stability with clay was not significant. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3208–3214, 2003  相似文献   

13.
《Polymer》2007,48(6):1490-1499
Two polymerizable cationic surfactants, (11-acryloyloxyundecyl)dimethyl(2-hydroxyethyl)ammonium bromide (hydroxyethyl surfmer) and (11-acryloyloxyundecyl)dimethylethylammonium bromide (ethyl surfmer), were used for the modification of montmorillonite (MMT) clay. The modification of MMT dispersions was carried out by ion exchange of the sodium ions in Na+-MMT by surfactants in aqueous media. Modified MMT clays were then dispersed in styrene and subsequently polymerized in bulk by a free-radical polymerization reaction to yield polystyrene–clay nanocomposites. An exfoliated structure was obtained using the ethyl surfmer-modified clay, whereas a mixed exfoliated/intercalated structure was obtained using the hydroxyethyl surfmer-modified clay. Nanocomposite structures were confirmed by small angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). The nanocomposites exhibited enhanced thermal stability and an increase in glass transition temperature, relative to neat polystyrene. The nanocomposites also exhibited enhanced mechanical properties, which were dependent on the clay loading. Intercalated polystyrene–clay nanocomposites were obtained using the non-polymerizable surfactant-modified clay (cetyltrimethylammonium bromide). Nanocomposites made from mixtures of surfmer-modified and CTAB-modified clays were also prepared, showing intermediate properties. However, when the nanocomposites were prepared in solution only intercalated morphologies were obtained. This was attributed to the competition between the solvent molecules and monomer in penetrating into clay galleries. These nanocomposites also exhibited enhanced thermal stability relative to the virgin polystyrene prepared by the same method. Similar temperatures of degradation (at 50% decomposition) were found for these nanocomposites relative to those prepared by bulk polymerization.  相似文献   

14.
Layered double hydroxides/epoxy (LDHs/EP) nanocomposites were prepared from organo-modified LDHs, a diglycidyl ether of bisphenol A monomer (DGEBA) and amine curing agents. The organo-modified LDHs were obtained by ionic exchange of a magnesium-aluminum carbonate LDH in an acid medium. X-ray diffraction and transmission electron microscopy showed a dispersion of the layers at a nanometer scale, indicating the formation of LDH/EP nanocomposites. The thermal degradation and flame resistance properties of LDH/EP nanocomposites, montmorillonite-epoxy (MMT/EP) nanocomposites, LDH/EP microcomposites and aluminum hydroxide-epoxy microcomposites were compared by thermogravimetrical analyses, simultaneous thermal analyses, UL94 and cone calorimeter tests. Only LDH/EP nanocomposites showed self-extinguishing behavior in the horizontal UL94 test; LDH/EP microcomposites and MMT/EP nanocomposites samples burned completely showing that the unique flame resistance of LDH/EP nanocomposites is related to both the level of dispersion and the intrinsic properties of LDH clay. Furthermore, cone calorimeter revealed intumescent behavior for LDH/EP nanocomposites and a higher reduction in the peak heat release rate compared to MMT/EP nanocomposites.  相似文献   

15.
In this study, the main goal is to obtain montmorillonite nanocomposites of polypropylene (PP). To achieve this goal, a two‐phase study was performed. In the first part of the work, organomodified clay (OMMT) was synthesized and characterized. Octadecyltrimethylammonium bromide (ODTABr) cationic surfactant was added to the clay (Na‐activated montmorillonite, MMT) dispersions in different concentrations in the range of 5 × 10?5–1 × 10?2 mol/L. Rheologic, electrokinetic, and spectral analyses indicated that ODTABr has interacted with MMT at optimum conditions when the concentration was 1 × 10?2 mol/L. In the second part, modified (OMMT) and unmodified (MMT) montmorillonite were used to obtain PP nanocomposites (OMMT/PP and MMT/PP, respectively). The nanocomposites were prepared by melt intercalation where the montmorillonite contents were 1 or 5% (w/w) for each case. The thermal analyses showed that the thermal properties of OMMT/PP nanocomposites were better than MMT/PP, and both of them were also better than pure polymer. Increase in the concentration of MMT (or OMMT) decreased the thermal resistance. Based on the IR absorption intensity changes of regularity and conformational bands, it is found that the content of the helical structure of macromolecular chains has increased with increasing concentrations of both MMT and OMMT in the nanocomposites. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
PET‐clay nanocomposites were prepared using alkyl quaternary ammonium and phosphonium modified clays by melt‐mixing at 280°C using a micro twin screw extruder. The latter clays were prepared by synthesizing phosphonium surfactants using a simple one‐step method followed by a cation exchange reaction. The onset temperature of decomposition (Tonset) for phosphonium clays (>300°C) was found to be significantly higher than that of ammonium clays (around 240°C). The clay modified with a lower concentration (0.8 meq) of phosphonium surfactant showed a higher Tonset as compared to the clay modified with a higher concentration (1.5 meq) of surfactants. Nanocomposites prepared with octadecyltriphenyl phosphonium (C18P) modified clay showed a higher extent of polymer intercalation as compared with benzyltriphenylphosphonium (BTP) and dodecyltriphenylphosphonium (C12P) modified clays. The nanocomposites prepared with ammonium clays showed a significant decrease in the molecular weight of PET during processing due to thermal degradation of ammonium surfactants. This resulted in a substantial decrease in the mechanical properties. The molecular weight of PET was not considerably reduced during processing upon addition of phosphonium clay. The nanocomposites prepared using phosphonium clays showed an improvement in thermal properties as compared with ammonium clay‐based nanocomposites. Tonset increased significantly in the phosphonium clay‐based nanocomposites and was higher for nanocomposites which contained clay modified with lower amount of surfactant. The tensile strength decreased slightly; however, the modulus showed a significant improvement upon addition of phosphonium clays, as compared with PET. Elongation at break decreased sharply with clay. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
Acrylonitrile–butadiene–styrene (ABS)–clay composite and intercalated nanocomposites were prepared by melt processing, using Na‐montmorillonite (MMT), several chemically different organically modified MMT (OMMT) and Na‐laponite clays. The polymer–clay hybrids were characterized by WAXD, TEM, DSC, TGA, tensile, and impact tests. Intercalated nanocomposites are formed with organoclays, a composite is obtained with unmodified MMT, and the nanocomposite based on synthetic laponite is almost exfoliated. An unintercalated nanocomposite is formed by one of the organically modified clays, with similar overall stack dispersion as compared to the intercalated nanocomposites. Tg of ABS is unaffected by incorporation of the silicate filler in its matrix upto 4 wt % loading for different aspect ratios and organic modifications. A significant improvement in the onset of thermal decomposition (40–44°C at 4 wt % organoclay) is seen. The Young's modulus shows improvement, the elongation‐at‐break shows reduction, and the tensile strength shows improvement. Notched and unnotched impact strength of the intercalated MMT nanocomposites is lower as compared to that of ABS matrix. However, laponite and overexchanged organomontmorillonite clay lead to improvement in ductility. For the MMT clays, the Young's modulus (E) correlates with the intercalation change in organoclay interlayer separation (Δd001) as influenced by the chemistry of the modifier. Although ABS‐laponite composites are exfoliated, the intercalated OMMT‐based nanocomposites show greater improvement in modulus. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

18.
M. Wang  A.J. Hsieh 《Polymer》2010,51(26):6295-6302
We examine the influence of tethering chemistry of cationic surfactants on exfoliation of montmorillonite (MMT) clay dispersed in methyl methacrylate (MMA) followed by in-situ polymerization to form poly(methyl methacrylate) (PMMA) nanocomposites, the effect of exfoliation and clay loading on the rheology of polymer/clay dispersions in dimethyl formamide, and the diameters of nanocomposite fibers formed from these dispersions by electrospinning. Incorporation of an additional reactive tethering group of methacryl functionality significantly improves the intercalation and exfoliation of clays in both in-situ polymerized PMMA nanocomposites and the corresponding electrospun fibers. The proper surfactant chemistry also increases the dispersion stability, extensional viscosity, extent of strain hardening and thus the electrospinnablity of the nanocomposite dispersions, especially at low nanocomposite concentrations. The degree of the enhancement in electrospinnability by clays with proper tethering chemistry is at least the same as or greater than that obtained with three times higher loading level of clay particles without proper tethering chemistry in the nanocomposites. These results suggest a new strategy to produce smaller diameter fibers from very dilute polymer solutions, which are otherwise not electrospinnable, by incorporating a small amount of well-exfoliated clays.  相似文献   

19.
Nanocomposites based on polypropylene (PP) and unmodified Montmorillonite were prepared using a novel elaboration route based on a water‐assisted extrusion process. Unmodified Montmorillonite, high shear compounding together with injection of aqueous suspension and reactive processing technology were used. Different aqueous suspensions containing cationic or anionic surfactants, and a compatibilizer (PP‐g‐MA) were injected during extrusion to promote clay dispersion. For a comparison purpose, a commercial PP/clay masterbatch was melt mixed to PP. Structural, morphological, and rheological characterizations indicate clearly that the cationic suspensions ease the dispersion of clay platelets in the PP matrix. No full exfoliation is, however, obtained, and the system remains still less homogeneous than the nanocomposite based on the commercial masterbatch. Nevertheless, mechanical and thermal characterizations of the nanocomposites based on cationic surfactants demonstrate the efficiency to disperse clay in the polymer matrix, and the effect on the ductility compared to usual PP nanocomposites is promising. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

20.
This article advances the use of an inline optical detector to monitor the disaggregation of the montmorillonite (MMT) clay tactoids during the preparation of polypropylene (PP)/MMT nanocomposites via polymer melt compounding. During the exfoliation of the tactoids their size are reduced below the minimum particle size to produce light extinction and so, the signal of the inline detector reduces as the nanosize composite is formed. The measurement is done at the transient state with the MMT clay added as a pulse with constant weight into the PP extrusion melt flow and followed by the optical detector. The data comes out as the common residence time distribution curves having its maximum intensity related to the tactoids average particle size, keeping all other variables constants. The light extinction was measured for composites with different clays (Cloisite® 15A, 30B, Na+, and Sintered 20A) using the same PP grafted with maleic anhydride compatibilizer. The dissaglomeration/exfoliation efficiency increases as: ‘‘Sintered 20A’’ < ‘‘Na+ clay’’ < ‘‘organo‐modified clay’’ < ‘‘organo‐modified clay + compatibilizer’’. The best result is obtained using Cloisite® 15A and Cloisite® 20A following the expected reduction of the particle size obtained during a nanocomposite melt processing. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号