首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A high‐order generalized finite element method (GFEM) for non‐planar three‐dimensional crack surfaces is presented. Discontinuous p‐hierarchical enrichment functions are applied to strongly graded tetrahedral meshes automatically created around crack fronts. The GFEM is able to model a crack arbitrarily located within a finite element (FE) mesh and thus the proposed method allows fully automated fracture analysis using an existing FE discretization without cracks. We also propose a crack surface representation that is independent of the underlying GFEM discretization and controlled only by the physics of the problem. The representation preserves continuity of the crack surface while being able to represent non‐planar, non‐smooth, crack surfaces inside of elements of any size. The proposed representation also provides support for the implementation of accurate, robust, and computationally efficient numerical integration of the weak form over elements cut by the crack surface. Numerical simulations using the proposed GFEM show high convergence rates of extracted stress intensity factors along non‐planar curved crack fronts and the robustness of the method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
An extended/generalized finite element method (XFEM/GFEM) for simulating quasistatic crack growth based on a phase-field method is presented. The method relies on approximations to solutions associated with two different scales: a global scale, that is, structural and discretized with a coarse mesh, and a local scale encapsulating the fractured region, that is, discretized with a fine mesh. A stable XFEM/GFEM is employed to embed the displacement and damage fields at the global scale. The proposed method accommodates approximation spaces that evolve between load steps, while preserving a fixed background mesh for the structural problem. In addition, a prediction-correction algorithm is employed to facilitate the dynamic evolution of the confined crack regions within a load step. Several numerical examples of benchmark problems in two- and three-dimensional quasistatic fracture are provided to demonstrate the approach.  相似文献   

3.
4.
This work addresses computational modeling challenges associated with structures subjected to sharp, local heating, where complex temperature gradients in the materials cause three‐dimensional, localized, intense stress and strain variation. Because of the nature of the applied loadings, multiphysics analysis is necessary to accurately predict thermal and mechanical responses. Moreover, bridging spatial scales between localized heating and global responses of the structure is nontrivial. A large global structural model may be necessary to represent detailed geometry alone, and to capture local effects, the traditional approach of pre‐designing a mesh requires careful manual effort. These issues often lead to cumbersome and expensive global models for this class of problems. To address them, the authors introduce a generalized FEM (GFEM) approach for analyzing three‐dimensional solid, coupled physics problems exhibiting localized heating and corresponding thermomechanical effects. The capabilities of traditional hp‐adaptive FEM or GFEM as well as the GFEM with global–local enrichment functions are extended to one‐way coupled thermo‐structural problems, providing meshing flexibility at local and global scales while remaining competitive with traditional approaches. The methods are demonstrated on several example problems with localized thermal and mechanical solution features, and accuracy and (parallel) computational efficiency relative to traditional direct modeling approaches are discussed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
This paper presents high‐order implementations of a generalized finite element method for through‐the‐thickness three‐dimensional branched cracks. This approach can accurately represent discontinuities such as triple joints in polycrystalline materials and branched cracks, independently of the background finite element mesh. Representative problems are investigated to illustrate the accuracy of the method in combination with various discretizations and refinement strategies. The combination of local refinement at crack fronts and high‐order continuous and discontinuous enrichments proves to be an excellent combination which can deliver convergence rates close to that of problems with smooth solutions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
This paper presents a computational framework for quasi‐static brittle fracture in three‐dimensional solids. The paper sets out the theoretical basis for determining the initiation and direction of propagating cracks based on the concept of configurational mechanics, consistent with Griffith's theory. Resolution of the propagating crack by the FEM is achieved by restricting cracks to element faces and adapting the mesh to align it with the predicted crack direction. A local mesh improvement procedure is developed to maximise mesh quality in order to improve both accuracy and solution robustness and to remove the influence of the initial mesh on the direction of propagating cracks. An arc‐length control technique is derived to enable the dissipative load path to be traced. A hierarchical hp‐refinement strategy is implemented in order to improve both the approximation of displacements and crack geometry. The performance of this modelling approach is demonstrated on two numerical examples that qualitatively illustrate its ability to predict complex crack paths. All problems are three‐dimensional, including a torsion problem that results in the accurate prediction of a doubly‐curved crack. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
This paper presents a generalized finite element method (GFEM) for crack growth simulations based on a two-scale decomposition of the solution—a smooth coarse-scale component and a singular fine-scale component. The smooth component is approximated by discretizations defined on coarse finite element meshes. The fine-scale component is approximated by the solution of local problems defined in neighborhoods of cracks. Boundary conditions for the local problems are provided by the available solution at a crack growth step. The methodology enables accurate modeling of 3-D propagating cracks on meshes with elements that are orders of magnitude larger than those required by the FEM. The coarse-scale mesh remains unchanged during the simulation. This, combined with the hierarchical nature of GFEM shape functions, allows the recycling of the factorization of the global stiffness matrix during a crack growth simulation. Numerical examples demonstrating the approximating properties of the proposed enrichment functions and the computational performance of the methodology are presented.  相似文献   

8.
The analysis of three‐dimensional crack problems using enriched crack tip elements is examined in this paper. It is demonstrated that the enriched finite element approach is a very effective technique for obtaining stress intensity factors for general three‐dimensional crack problems. The influence of compatibility, integration, element shape function order, and mesh refinement on solution convergence is investigated to ascertain the accuracy of the numerical results. It is shown that integration order has the greatest impact on solution accuracy. Sample results are presented for semi‐circular surface cracks and compared with previously obtained solutions available in the literature. Good agreement is obtained between the different numerical solutions, except in the small zone near the free surface where previously published results have often neglected the change in the stress singularity at the free surface. The enriched crack tip element appears to be particularly effective in this region, since boundary conditions can be easily imposed on the stress intensity factors to accurately represent the correct free surface condition. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, we analyse the p‐convergence of a new version of the generalized finite element method (generalized FEM or GFEM) which employs mesh‐based handbook functions which are solutions of boundary value problems in domains extracted from vertex patches of the employed mesh and are pasted into the global approximation by the partition of unity method (PUM). We show that the p‐version of our GFEM is capable of achieving very high accuracy for multiscale problems which may be impossible to solve using the standard FEM. We analyse the effect of the main factors affecting the accuracy of the method namely: (a) The data and the buffer included in the handbook domains, and (b) The accuracy of the numerical construction of the handbook functions. We illustrate the robustness of the method by employing as model problem the Laplacian in a domain with a large number of closely spaced voids. Similar robustness can be expected for problems of heat‐conduction and elasticity set in domains with a large number of closely spaced voids, cracks, inclusions, etc. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
An efficient solution technique is proposed for the three‐dimensional boundary element modelling of half‐space problems. The proposed technique uses alternative fundamental solutions of the half‐space (Mindlin's solutions for isotropic case) and full‐space (Kelvin's solutions) problems. Three‐dimensional infinite boundary elements are frequently employed when the stresses at the internal points are required to be evaluated. In contrast to the published works, the strongly singular line integrals are avoided in the proposed solution technique, while the discretization of infinite elements is independent of the finite boundary elements. This algorithm also leads to a better numerical accuracy while the computational time is reduced. Illustrative numerical examples for typical isotropic and transversely isotropichalf‐space problems demonstrate the potential applications of the proposed formulations. Incidentally, the results of the illustrative examples also provide a parametric study for the imperfect contact problem. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
Predicting localized, nonlinear, thermoplastic behavior and residual stresses and deformations in structures subjected to intense heating is a prevalent challenge in a range of modern engineering applications. The authors present a generalized finite element method targeted at this class of problems, involving the solution of intrinsically parallelizable local boundary value problems to capture localized, time‐dependent thermo‐elasto‐plastic behavior, which is embedded in the coarse, structural‐scale approximation via enrichment functions. The method accommodates approximation spaces that evolve in between time or load steps while maintaining a fixed global mesh, which avoids the need to map solutions and state variables on changing meshes typical of traditional adaptive approaches. Representative three‐dimensional examples exhibiting localized, transient, nonlinear thermal and thermomechanical effects are presented to demonstrate the advantages of the method with respect to available approaches, especially in terms of its flexibility and potential for realistic future applications in this area. Parallelism of the approach is also discussed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
This paper consists of an extension of simulation with direct estimation of stress intensity factors to the three‐dimensional case. Here, it combines X‐FEM with localized multigrids and direct estimation of quantities of interest along the crack front (SIF, T‐stress, etc.) based on crack tip asymptotic series expansion. In practice, a three‐dimensional patch is introduced locally with a truncated basis of Williams series expansion and is linked in a weak sense with the X‐FEM localized multigrids. Some examples (with available analytical solutions) illustrate the efficiency and the robustness of the method. These examples consider planar cracks with curved front, but the proposed method aims to apply to any continuously curved crack. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
A multiscale method for 3‐D crack propagation simulation in large structures is proposed. The method is based on the extended finite element method (X‐FEM). The asymptotic behavior of the crack front is accurately modeled using enriched elements and no remeshing is required during crack propagation. However, the different scales involved in fracture mechanics problems can differ by several orders of magnitude and industrial meshes are usually not designed to account for small cracks. Enrichments are therefore useless if the crack is too small compared with the element size. To overcome this drawback, a project combining different numerical techniques was started. The first step was the implementation of a global multigrid algorithm within the X‐FEM framework and was presented in a previous paper (Eur. J. Comput. Mech. 2007; 16 :161–182). This work emphasized the high efficiency in cpu time but highlighted that mesh refinement is required on localized areas only (cracks, inclusions, steep gradient zones). This paper aims at linking the different scales by using a local multigrid approach. The coupling of this technique with the X‐FEM is described and computational aspects dealing with intergrid operators, optimal multiscale enrichment strategy and level sets are pointed out. Examples illustrating the accuracy and efficiency of the method are given. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
An approximate level set method for three‐dimensional crack propagation is presented. In this method, the discontinuity surface in each cracked element is defined by element‐local level sets (ELLSs). The local level sets are generated by a fitting procedure that meets the fracture directionality and its continuity with the adjacent element crack surfaces in a least‐square sense. A simple iterative procedure is introduced to improve the consistency of the generated element crack surface with those of the adjacent cracked elements. The discrete discontinuity is treated by the phantom node method which is a simplified version of the extended finite element method (XFEM). The ELLS method and the phantom node technology are combined for the solution of dynamic fracture problems. Numerical examples for three‐dimensional dynamic crack propagation are provided to demonstrate the effectiveness and robustness of the proposed method. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
A symmetric‐Galerkin boundary element framework for fracture analysis with frictional contact (crack friction) on the crack surfaces is presented. The algorithm employs a continuous interpolation on the crack surface (utilizing quadratic boundary elements) and enables the determination of two important quantities for the problem, namely the local normal tractions and sliding displacements on the crack surfaces. An effective iterative scheme for solving this non‐linear boundary value problem is proposed. The results of test examples are compared with available analytical solutions or with those obtained from the displacement discontinuity method (DDM) using linear elements and internal collocation. The results demonstrate that the method works well for difficult kinked/junction crack problems. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
This paper presents a boundary element analysis of linear elastic fracture mechanics in three‐dimensional cracks of anisotropic solids. The method is a single‐domain based, thus it can model the solids with multiple interacting cracks or damage. In addition, the method can apply the fracture analysis in both bounded and unbounded anisotropic media and the stress intensity factors (SIFs) can be deduced directly from the boundary element solutions. The present boundary element formulation is based on a pair of boundary integral equations, namely, the displacement and traction boundary integral equations. While the former is collocated exclusively on the uncracked boundary, the latter is discretized only on one side of the crack surface. The displacement and/or traction are used as unknown variables on the uncracked boundary and the relative crack opening displacement (COD) (i.e. displacement discontinuity, or dislocation) is treated as a unknown quantity on the crack surface. This formulation possesses the advantages of both the traditional displacement boundary element method (BEM) and the displacement discontinuity (or dislocation) method, and thus eliminates the deficiency associated with the BEMs in modelling fracture behaviour of the solids. Special crack‐front elements are introduced to capture the crack‐tip behaviour. Numerical examples of stress intensity factors (SIFs) calculation are given for transversely isotropic orthotropic and anisotropic solids. For a penny‐shaped or a square‐shaped crack located in the plane of isotropy, the SIFs obtained with the present formulation are in very good agreement with existing closed‐form solutions and numerical results. For the crack not aligned with the plane of isotropy or in an anisotropic solid under remote pure tension, mixed mode fracture behavior occurs due to the material anisotropy and SIFs strongly depend on material anisotropy. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

17.
Using the fundamental solutions and the Somigliana identity of piezoelectric medium, the boundary integral equations are obtained for a conductive planar crack of arbitrary shape in three-dimensional transversely isotropic piezoelectric medium. The singular behaviors near the crack edge are studied by boundary integral equation approach, and the intensity factors are derived in terms of the displacement discontinuity and the electric displacement boundary value sum near the crack edge on crack faces. The boundary integral equations for two dimensional crack problems are deduced as a special case of infinite strip planar crack. Based on the analogy of the obtained boundary integral equations and those for cracks in conventional isotropic elastic material and for contact problem of half-space under the action of a rigid punch, an analysis method is proposed. As an example, the solution to conductive Griffith crack is derived.  相似文献   

18.
This paper describes enhanced J‐integral estimation schemes for pipes with circumferential semi‐elliptical cracks subjected to tensile loading, global bending and internal pressure. These schemes are given in two different forms to cover the wide ranges of geometries and material parameters; the modified GE/EPRI method and the modified reference stress method. In the former method, new plastic influence functions for fully plastic J‐integral estimation are developed based on extensive three‐dimensional finite element calculations. In the latter method, new optimized reference loads are suggested and utilized to predict the J values. To verify the feasibility of these two schemes, J‐integral values obtained from further detailed FE analyses are compared to those from the proposed schemes. Because the estimated J‐integrals agree fairly well with the detailed FE analysis results, the new solutions can be applied for accurate structural integrity assessment of different size pipes with a circumferential surface crack.  相似文献   

19.
A stabilized global–local quasi‐static contact algorithm for 3D non‐planar frictional crack is presented in the X‐FEM/level set framework. A three‐field weak formulation is considered and allows an independent discretization of the bulk and the crack interface. Then, a fine discretization of the interface can be defined according to the possible complex contact state along the crack faces independently from the mesh in the bulk. Furthermore, an efficient stabilized non‐linear LATIN solver dedicated to contact and friction is proposed. It allows solving in a unified framework frictionless and frictional contact at the crack interface with a symmetric formulation, no iterations on the local stage (unilateral contact law with/without friction), no calculation of any global tangent operator, and improved convergence rate. 2D and 3D patch tests are presented to illustrate the relevance of the proposed model and an actual 3D frictional crack problem under cyclic fretting loading is modeled. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
A weakly singular symmetric Galerkin boundary element method (SGBEM) is coupled with the standard finite element method (FEM) in order to establish an accurate and efficient numerical technique for analysis of fractures in three‐dimensional, anisotropic, linearly elastic media. In the strategy, the weakly singular SGBEM developed by Rungamornrat and Mear (textitInt. J. Solids Struct. 2008; 45 :1283–1301; Comput. Methods Appl. Mech. Engrg 2008; 197 :4319–4332) is utilized to model a small‐scale region containing the crack while the (possibly large and complex) compliment region is treated by the FEM. The coupled technique exploits the positive features of both methods; the SGBEM proves to be a convenient and highly accurate method for obtaining mixed‐mode stress intensity factors along the crack front, whereas the FEM is very efficient for modeling large‐scale problems in the absence of cracks. An important aspect of the formulation and implementation of the technique is that continuity of displacement and traction across the interface between the SGBEM and FEM regions is enforced in a weak sense. This allows the two regions (one modeled by the SGBEM and the other by the FEM) to be discretized independently without the need for the resulting meshes to conform on the interface separating the regions, and this flexibility in the discretization process leads to a significant reduction in the modeling effort. To demonstrate the utility and accuracy of the technique, several boundary value problems involving both embedded and surface breaking cracks are treated, and it is shown that the coupled technique yields highly accurate stress intensity factors that exhibit only a slight dependence upon mesh refinement. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号