首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The common practice of increasing dietary energy density during the close-up dry period (last ~3 wk prepartum) has been recently associated with a higher incidence of metabolic disorders after calving. Despite these reports, over-feeding of metabolizable energy (ME) during the far-off, nonlactating period is a common management policy aimed at achieving optimum calving body condition score (BCS) in pasture-based systems, as cows are generally thinner than total mixed ration cows at the end of lactation. Our hypothesis was that both far-off and close-up overfeeding influence the peripartum adipose tissue changes associated with energy balance and inflammatory state. Sixty mid-lactation, grazing dairy cows of mixed age and breed were randomly allocated to 1 of 2 groups that were managed through late lactation to achieve a low and high BCS (approximately 4.25 and 5.0 on a 10-point scale) at dry-off. The low BCS cows were then overfed ME to ensure that they achieved the same BCS as the higher BCS group by calving. Within each rate of BCS gain treatment, cows were offered 65, 90, or 120% of their pre-calving ME requirements for 3 wk pre-calving in a 2 × 3 factorial arrangement of treatments (i.e., 10 cows/treatment). Subcutaneous adipose tissue was collected via biopsy at ?1, 1, and 4 wk relative to parturition. Quantitative PCR was used to measure mRNA and microRNA expression of targets related to adipogenesis and inflammation. Cows overfed in the far-off period had increased expression of miR-143 and miR-378 prepartum (?1 wk) indicating greater adipogenesis, consistent with their rapid gain in BCS following dry-off. Furthermore, the lower postpartum expression of IL6, TNF, TLR4, TLR9, and miR-145, and a higher abundance of miR-99a indicated lower body fat mobilization in early lactation in the same group. In the close-up period, feeding either 65 or 120% of ME requirements caused changes in FASN, IL1B, IL6R, TLR9, and the microRNA miR-143, miR-155, and miR-378. Their respective expression patterns indicate a tentative negative-feedback mechanism in metabolically compromised, feed-restricted cows, and a possible immune-related stimulation of lipolysis in apparently static adipocytes in overfed cows. Data from cows fed 90% of ME requirements indicate the existence of a balance between lipolytic (inflammatory-related) and anti-lipolytic signals, to prime the mobilization machinery in light of imminent lactation. Overall, results indicate that far-off dry cow nutrition influences peripartum adipose tissue metabolism, with neither strategy negatively affecting the physiological adaptation to lactation. Furthermore, to ensure a favorable transition, cows should be subjected to a small feed restriction in the close-up period, irrespective of far-off nutritional management.  相似文献   

2.
Body condition change during the dry period (ΔBCS) has been associated with a myriad of transition cow diseases. We used data from 3 studies to assess the relationship between ΔBCS, feeding behavior, and body condition score (BCS) at dry-off. We also studied the mediation effect that dry matter intake (DMI) has on ΔBCS and the association between dry period feeding time and DMI. A total of 100 parous cows were enrolled in 3 studies to investigate differences in dry period diet on behavior, health, and performance pre- and postcalving. Body weight was measured and BCS was assessed by the same trained observer after dry-off and 1 wk from calving date. The ΔBCS was calculated by subtracting the BCS at calving minus the BCS at dry-off. The BCS at dry-off was categorized as overconditioned (≥3.5) or not overconditioned (<3.5); no cows had a BCS <2.75. Feeding behavior data were collected using electronic feed bins. Parity at dry-off (median = 2; min = 1, max = 6) and 305-d milk production (mean = 10,235 kg, SD = 1,625 kg) from the previous lactation were considered. Data sets were split into 2 time periods: d ?56 to ?22 (early) and ?21 to 0 (late) in relation to calving. Selected feeding behaviors (DMI, DMI as a percentage of body weight, and feeding time) were used to evaluate the associations between each feeding behavior and BCS at dry-off in each period using mixed linear regression models. Each model included the following covariates: parity, previous 305-d milk yield, and trial treatment. Experimental day was included as random slope, and cow was included as random intercept. A mediation analysis was used to evaluate the potential causal direct effect of BCS at dry-off on ΔBCS and the potential indirect effect mediated by differences in DMI. The BCS at dry-off was associated with changes in feeding behavior, such that overconditioned cows had lesser daily DMI and feeding time during the early and late dry periods compared with not overconditioned animals. We also noted an effect of previous 305-d milk yield on DMI; cows that produced more milk had greater DMI throughout the dry period. The ΔBCS was only partially mediated by DMI, and BCS at dry-off still had a direct effect on ΔBCS. This result indicated that mechanisms other than DMI were associated with BCS loss during the dry period. Feeding time correlated weakly and moderately with DMI during the early and late dry periods, respectively. To conclude, strategies to improve intake during the dry period should take dry-off BCS into account or, preferably, efforts should be made to minimize the number of overconditioned cows at the end of lactation.  相似文献   

3.
《Journal of dairy science》2022,105(7):5761-5775
Our objective was to investigate the effects of prepartum metabolizable protein (MP) supply and management strategy on milk production and blood biomarkers in early lactation dairy cows. Ninety-six multigravida Holstein cows were used in a randomized complete block design study, blocked by calving date, and then assigned randomly to 1 of 3 treatments within block. Cows on the first treatment were fed a far-off lower MP diet [MP = 83 g/kg of dry matter (DM)] between ?55 and ?22 d before expected calving and then a close-up lower MP diet (MP = 83 g/kg of DM) until parturition (LPLP). Cows on the second treatment were fed the far-off lower MP diet between ?55 to ?22 d before expected parturition and then a prepartum higher MP diet (MP = 107 g/kg of DM) until calving (LPHP). Cows on the third treatment had a shortened 43-d dry period and were fed the prepartum higher MP diet from dry-off to parturition (SDHP). After calving, cows received the same fresh diet from d 0 to 14 and the same high diet from d 15 to 84. Data were analyzed separately for wk ?6 to ?1 and wk 1 to 12, relative to parturition. Dry matter intake from wk ?6 to ?1 was not different between LPHP and LPLP and increased for SDHP compared with LPLP. In contrast, dry matter intake for wk 1 to 12 postpartum did not change for LPHP versus LPLP or for SDHP versus LPLP. Compared with LPLP cows, LPHP cows had lower energy-corrected milk yield and tended to have decreased milk fat yield during wk 1 to 12 of lactation. Conversely, yields of energy-corrected milk and milk fat and protein were similar for SDHP compared with LPLP. Plasma urea N during wk ?3 to ?1 increased for LPHP versus LPLP and for SDHP versus LPLP; however, no differences in plasma urea N were observed postpartum. Elevated prepartum MP supply did not modify circulating total fatty acids, β-hydroxybutyrate, total protein, albumin, or aspartate aminotransferase during the prepartum and postpartum periods. Increased MP supply prepartum combined with a shorter dry period (SDHP vs. LPLP) tended to increase whole-blood β-hydroxybutyrate postpartum; however, other blood metabolites were not affected. Taken together, under the conditions of this study, elevated MP supply in close-up diets reduced milk production without affecting blood metabolites in multiparous dairy cows during early lactation. A combination of a shorter dry period and increased prepartum MP supply (i.e., SDHP vs. LPLP) improved prepartum dry matter intake without modifying energy-corrected milk yield and blood biomarkers in early lactation cows.  相似文献   

4.
High-producing dairy cows with high pre-calving body condition score (BCS) are more susceptible to metabolic disorders and oxidative stress. The aim of present study was to evaluate the effects of close-up BCS and 3 times Se-vitamin E (SeE) injection on BCS change, blood metabolites, oxidative status, and milk yield in high-producing Holstein cows. A total of 136 multiparous cows were divided into 2 groups based on their BCS including high (HB = 4.00 ± 0.20) and moderate (MB = 3.25 ± 0.25) at 3 wk before expected calving time. Then, each group was divided into 2 subgroups: 3 rounds of SeE injection at 21 d before, and 0 and 21 d after calving (+SeE), and no SeE injection (?SeE). Four final experimental groups were HB+SeE, MB+SeE, HB?SeE, and MB?SeE (34 cows each). Results indicated that interaction effect of BCS and SeE affected serum glucose, and the MB+SeE group had the highest level. The HB cows lost more BCS compared with MB cows during the postcalving period. Moreover, serum insulin concentration increased after SeE injection. The HB cows had higher serum nonesterified fatty acids at 14 d after calving. The MB cows tended to have higher activity of blood glutathione peroxidase over the study period. Furthermore, the SeE-injected cows tended to have higher activity of blood glutathione peroxidase at 28 d after calving. Serum albumin level was increased by SeE injection. The HB cows had greater milk production than MB cows, and SeE-injected cows tended to have higher milk fat percentage and higher fat:protein ratio compared with nonsupplemented cows. It was concluded that SeE injection had beneficial effects on some blood metabolites, albumin as a blood antioxidative parameter, and lactation performance in high-producing dairy cows, especially cows with moderate close-up BCS.  相似文献   

5.
《Journal of dairy science》2019,102(12):11414-11427
Lameness has been extensively studied in lactating cows, whereas few studies have reported on lameness during the dry period. We conducted a prospective longitudinal study to describe the epidemiology of lameness during the dry period and to identify risk factors associated with onset, cure, and chronic cases of lameness. A total of 455 cows from 6 freestall commercial dairy farms were enrolled at 9 wk before calving and gait scored weekly until calving using a 5-point scale. A subset of cows was also followed fortnightly after calving to measure the association between lameness during the dry period and lameness during early lactation. Body condition score (BCS) was assessed in a 5-point scale using increments of 0.5. Hoof-trimming records, parity, and previous lactation milk production were retrieved from farm's database. Cows were considered sound when 2 consecutive scores were ≤2 and lame when 2 consecutive scores = 3, or any assessment with score >3; when in a sequence of scores only one score = 3 (or ≤2), the cow was considered sound (or alternatively lame). Following this lameness definition, we derived weekly lameness status for each cow and calculated the number of new cases of lameness, the number of cure cases and the number of chronic cases. The incidence rate of lameness cases during the dry period was 8.2 lameness cases/100 cow per wk, whereas cure rate was 7.1 cure cases/100 cow per wk; at the end of the dry period 50% of cows had developed lameness and 36% were cured. Multilevel logistic regression models using farm as random effect were fitted to assess (1) the association between being lame in wk 2 or 8 postcalving with being lame in the last week precalving, (2) risk factors for lameness onset, (3) risk factors for lameness cure, and (4) risk factors for chronic lameness. Cows that were lame in the week immediately before calving were more likely to be lame in wk 2 and 8 after calving. We found that the interaction between parity and hoof-trimming before dry-off was associated with lameness onset; primiparous cows that were trimmed before dry-off had lower odds of developing lameness, whereas the opposite was found for multiparous cows. The same interaction was also associated with the odds of chronic lameness. Cows that were diagnosed with noninfectious hoof lesions compared with cows that were not diagnosed with hoof lesions before dry-off, and cows that had BCS <3 compared with cows with BCS 3.0 to 3.5 at dry-off had higher odds of chronic lameness. Conversely, primiparous cows and cows with BCS 3.0 to 3.5 had higher odds of curing lameness during the dry period. Our results suggest that the dry period may be a period of high risk for lameness development and that hoof-trimming before dry-off may not be effective for all cows.  相似文献   

6.
The objectives of this study were to determine the effects of far-off and close-up diets on prepartum metabolism, postpartum metabolism, and postpartum performance of multiparous Holstein cows. From dry-off to −25 d relative to expected parturition (far-off dry period), cows were fed a control diet to meet National Research Council (NRC) recommendations for net energy for lactation (NEL) at ad libitum intake (100NRC; n = 25) or a higher nutrient density diet, which was fed for either ad libitum intake to provide at least 150% of calculated NEL requirement (150NRC; n = 25) or at restricted intake to provide 80% of calculated NEL requirements (80NRC; n = 24). From −24 d relative to expected parturition until parturition (close-up period), cows were fed a diet that met or exceeded NRC nutrient recommendations at either ad libitum intake (n = 38) or restricted intake (n = 36) to provide 80% of the calculated NEL requirement. After parturition, all cows were fed a lactation diet and measurements were made through 56 d in milk (DIM). Prepartum metabolism was consistent with the plane of nutrition. During the first 10 DIM, far-off treatments had significant carryover effects on dry matter intake, energy balance, serum nonesterified fatty acid (NEFA) concentration, and serum β-hydroxybutyrate concentration. Cows with the lower energy balance during the far-off period (100NRC and 80NRC) had higher dry matter intake and energy balance and lower serum NEFA and β-hydroxybutyrate during the first 10 DIM. There were no effects of close-up diet and no interactions of far-off and close-up treatments. During the first 56 DIM, there were no residual effects of far-off or close-up diets on dry matter intake, milk yield or composition, body weight, body condition score, serum glucose and insulin concentrations, or muscle lipid concentration. Serum NEFA was higher for 150NRC than 80NRC; 100NRC was intermediate. Thus, the effects of far-off and close-up treatments on postpartum variables diminished as lactation progressed. Overfeeding during the far-off period had a greater negative impact on peripartum metabolism than did differences in close-up period nutrition.  相似文献   

7.
The primary objective of this study was to evaluate the effect on dry matter intake (DMI), milk yield, milk composition, body weight (BW), and body condition score (BCS) change of cows offered diets differing in energy density in the last 4 wk of gestation and in the first 8 wk of lactation. Three diets (grass silage:straw, 75:25 on a dry matter basis (SS), grass silage (S), and grass silage + 3 kg concentrate daily (C)) precalving, and two diets (4 kg [LC] or 8 kg [HC] concentrate daily + grass silage ad libitum) postcalving were combined in a 3 x 2 factorial design. Sixty Holstein-Friesian cows entering their second lactation were blocked according to expected calving date and BCS into groups of six and were then allocated at random to the treatments. Individual feeding started 4 wk prior to the expected calving date and measurements were made until the end of the 8th wk of lactation. Mean DMI differed between each of the precalving treatments (7.4, 8.1, and 9.9 kg/d for SS, S, and C, respectively) in the precalving period. The DMI also differed between SS and C for wk 1 to 8 (13.5 and 14.2 kg/d) postcalving. Postcalving, milk (24.2, 26.2, and 28.2 kg/d), fat (933, 1063, and 1171 g/d), and protein (736, 797, and 874 g/d) yields differed between SS, S, and C, respectively. The BCS changes differed between SS and C (-0.09 and 0.12 of a BCS) in the precalving period and between SS and S compared with C (0.02, 0.06, and -0.26 of a BCS) for wk 1 to 8 postcalving. The BW change differed between SS and S compared with C in both wk 1 to 4 (-0.23, -0.37, and -1.25 kg/d) and wk 1 to 8 (0.18, 0.10, and -0.58 kg/ d) postcalving. The BW and BCS were lower at calving for cows on SS compared with C. The greater amount of concentrate supplement postcalving increased DMI, yields of milk, fat, and protein and decreased BW loss in the first 8 wk of lactation. In conclusion, these results indicate that a greater energy density diet in the final 4 wk of the dry period improves cow production in early lactation.  相似文献   

8.
《Journal of dairy science》2021,104(9):9886-9901
An experiment was conducted to determine the effects of low and high metabolizable protein (MP) diets when fed for ad libitum and controlled intake during the prepartum period on postpartum lactation performance and feeding behavior of dairy cows. Thirty-six multiparous Holstein cows were blocked by parity, expected calving date, and previous lactation milk yield at −21 d relative to expected calving and were randomly assigned to 1 of 4 close-up period dietary treatments providing low MP (LMP) or high MP (HMP) diets with controlled intake (CNI) or ad libitum intake (ALI). The concentrations of MP were 65 and 90 g/kg dry matter for LMP and HMP diets, respectively, whereas intake was controlled to supply 100 and 160% of the NRC (2001) energy requirements for CNI and ALI groups, respectively. The concentration of net energy for lactation (NEL) in the treatment diets was 1.50 Mcal/kg. All cows were fed a similar lactation diet after calving (1.50 Mcal/kg of NEL and 83.3 g/kg of MP). The HMP diet increased dry matter intake during the first 3 wk and tended to increase dry matter intake over the 9 wk of lactation. Meal size and eating rate increased in the ALI cows during the prepartum period. Meal frequency increased with the HMP diet during the postpartum period. Milk yield increased by 15.2% with the HMP diet over the 9 wk of lactation. The HMP diet increased energy-corrected milk (ECM) yield in CNI versus ALI cows, whereas the LMP diet increased ECM yield in ALI versus CNI cows over the 9 wk of lactation. The increase in ECM yield of LMP-ALI versus LMP-CNI cows was supported by greater body condition loss and serum β-hydroxybutyrate over the 9 wk of lactation. Taken together, these data indicate that prepartum controlled intake of a high protein diet can provide the benefits of both strategies.  相似文献   

9.
Betaine is a natural compound found in sugar beets that serves as a methyl donor and organic osmolyte when fed to animals. The objective was to evaluate the effect of feeding betaine-containing molasses on performance of transition dairy cows during late summer in 2 trials. In early September, cows were randomly assigned to betaine (BET) or control (CON) groups either shortly after dry off (trial 1; n = 10 per treatment) or 24 d before calving (trial 2; n = 8 per treatment) based on parity and previous mature equivalent milk yield. Cows were fed common diets supplemented either with a liquid supplement made of molasses from sugar cane and condensed beet solubles containing betaine [BET, 89.1 g/kg of dry matter (DM)] or a sugar cane molasses-based liquid supplement without betaine (CON) until 8 wk postpartum. The liquid supplements had similar nutrient contents and were fed at a rate of 1.1 and 1.4 kg DM/d for pre- and postpartum cows, respectively. Starting at their entry in the studies, cows were housed in the same freestall barn without a cooling system. After calving, all cows were housed in the same barn cooled by misters and fans and milked thrice daily. Intake was recorded daily and body weight and body condition score were assessed every 2 wk. Milk yield was recorded at each milking and composition was analyzed weekly. Blood samples were collected weekly from a subset of cows to assess concentrations of metabolites and AA. No treatment effects were apparent for DM intake and body weight in the prepartum and postpartum periods. For cows enrolled at dry off, BET supported higher milk yield (45.1 vs. 41.9 kg/d) and fat content (4.78 vs. 4.34%) and elevated plasma concentrations of nonesterified fatty acids and β-hydroxybutyrate in early lactation compared to CON. However, no differences were observed for milk yield, most milk component contents and yields, and blood metabolites between treatments for cows enrolled during the close-up period. Compared to cows in the CON group, BET cows enrolled during the far-off period tended to have lower plasma concentrations of Met, Thr, and Trp during the pre- and postpartum periods. They also had lower plasma concentrations of Lys and Phe before calving but higher plasma Gly concentration after parturition. In conclusion, feeding a betaine-containing liquid supplement from far-off through early lactation improves lactation performance but increases adipose tissue mobilization and production of ketone bodies in early lactation.  相似文献   

10.
Fifty-two multiparous dairy cows were allocated to 4 treatments consuming 5.4, 8.2, 10.0, or 11.0 kg/d of pasture dry matter per cow for 27 +/- 9.6 d precalving. This equated to 1.3, 1.9, 2.4, and 2.6% of body weight (BW; not including the conceptus weight). Following calving, all cows were fed ad libitum on pasture. Blood was sampled 17 d precalving, on day of calving, and on d 1, 2, 3, 4, 7, 14, 28, and 35 postcalving. Results suggest that the near-term grazing dairy cow requires 1.05 MJ of ME/kg of BW(0.75) and that previous estimates of energy requirements were underestimated. Precalving plasma concentrations of glucose, insulin-like growth factor-1, and leptin increased quadratically with increasing pasture intake. This was associated with precalving plasma concentrations of growth hormone that declined linearly, and concentrations of nonesterified fatty acids and beta-hydroxybutyrate that declined quadratically with increasing dry matter intake (DMI). Postcalving plasma concentrations of these metabolites showed no lasting effect of precalving feeding. The effect of precalving nutrition on milk production was small, and other than milk fat, was confined to wk 1 postcalving. Milk fat yield increased with increasing precalving DMI and calving body condition score until wk 3 post-calving, after which treatment effects were not evident. These results indicate that the level of feeding in grazing dairy cows during the last month before calving has only small effects on cow metabolic and hormonal status, and on milk production in the first 5 wk of lactation.  相似文献   

11.
Lameness is a major welfare concern in the dairy industry, and access to physical activity during the dry period may improve hoof health. The objective of this study was to determine the effects of forced exercise, pasture turnout, or total confinement of dry cows on horn growth and wear and sole thickness. Twenty-nine primiparous and 31 multiparous, pregnant, nonlactating Holstein (n = 58) and Jersey-Holstein crossbred (n = 2) dairy cows were assigned to either total confinement (n = 20), exercise (n = 20), or pasture (n = 20) treatments at dry-off using rolling enrollment from January to November 2015. Cows were managed with a 60-d dry period (58.5 ± 5.4 d) divided into far-off (dry-off to 2 wk before parturition) and close-up periods (2 wk before projected parturition). Cows were housed in a naturally ventilated, 4-row freestall barn at the University of Tennessee's Little River Animal and Environmental Unit (Walland, TN) with concrete flooring and deep-bedded sand freestalls. Cows assigned to confinement remained in the housing pen. Exercise cows were walked for a targeted 1.5 h at 3.25 km/h, 5 times/wk until calving. Pasture cows were turned out for a targeted 1.5 h, 5 times/wk until calving. Hoof growth and wear and sole thickness of the rear hooves were measured on d 2 and 44, relative to dry-off. Data were analyzed using the MIXED procedure of SAS (SAS Institute Inc., Cary, NC). Cranial and caudal horn wear was greater for exercise cows than confinement and pasture cows. Exercise cows experienced more equal rates of horn growth and wear cranially. Confined cows tended to increase sole thickness from d 2 to 44, relative to dry-off. Frequent, short duration exercise on concrete did not impair the hoof health of late-gestation dry cows. Further, exercise may improve overall hoof health, potentially improving cow welfare.  相似文献   

12.
Improving body condition score of thin cows in late lactation is necessary, because cows that are thin at drying off exhibit decreased fertility postpartum and are at increased risk of disease and of being culled in the subsequent lactation. Offering a diet low in crude protein (CP) content in late lactation may help to improve body condition score (BCS) at drying off, whereas imposing an extended dry period (EDP) has been advocated as another way to increase BCS at calving. To test these hypotheses, 65 thin cows (mean BCS 2.25 at 14 wk precalving) were managed on 1 of 3 treatments between 13 and 9 wk prepartum: normal protein control {NP; grass silage + 5 kg/d of a normal protein concentrate [228 g of CP/kg of dry matter (DM)]}, low protein [LP; grass silage + 5 kg/d of a low-protein concentrate (153 g of CP/kg of DM)], or EDP (cows dried off at 13 wk precalving and offered a grass silage-only diet). Both NP and LP cows were dried off at wk 8 prepartum, after which all cows were offered a grass silage-only diet until calving. After calving, all cows were offered a common diet (supplying 11.1 kg of concentrate DM/cow per day) for 19 wk. Between 13 and 9 wk prepartum, LP cows had lower DM intake, milk yield, and body weight than NP cows. Whereas EDP cows had lower serum β-hydroxybutyrate and fatty acid concentrations than those of NP cows, BCS at wk 9 prepartum did not differ between treatments. Cows on the LP treatment continued to have lower DMI and BW than those of NP and EDP cows between 8 wk prepartum and calving, but only EDP cows had a higher BCS at calving. Treatment did not affect calving difficulty score or calf birth weight. Although all cows were offered a common diet postpartum, cows on the LP treatment had lower DM intake and milk fat + plus protein yield than cows on any other treatment during the 19-wk period postpartum, but we found no differences in any postpartum indicator of body tissue reserves. The treatments imposed from wk 13 to 9 prepartum had no effect on any fertility or health parameters examined postpartum. Extending the dry period for thin cows improved their BCS at calving but did not allow these cows to achieve the target BCS of 2.75, and we found no beneficial effects of this treatment on cow performance postpartum. Offering a lower-protein diet to thin cows in late lactation did not improve BCS at calving above that of cows on a normal protein diet, but had unexplained long-term negative effects on cow performance.  相似文献   

13.
The dry-off of dairy cows represents an important phase of the lactation cycle, influencing the outcome of the next lactation. Among the physiological changes, the severity of the inflammatory response can vary after the dry-off, and this response might have consequences on cow adaptation in the transition period. The plasma protein profile is a diagnostic tool widely used in humans and animals to assess the inflammatory status and predict the outcome of severe diseases. The albumin-to-globulin ratio (AG) can represent a simple and useful proxy for the inflammatory condition. In this study, we investigated the relationship between AG before dry-off and inflammation, metabolic profile, and performance of 75 Holstein dairy cows. Blood samples were collected from ?62 (7 d before dry-off) to 28 d relative to calving (DFC) to measure metabolic profile biomarkers, inflammatory variables, and liver function. Daily milk yield in the first month of lactation was recorded. Milk composition, body condition score, fertility, and health status were also assessed. The AG calculated 1 wk before dry-off (?62 DFC) was used to retrospectively group cows into tertiles (1.06 ± 0.09 for HI, 0.88 ± 0.04 for IN, and 0.72 ± 0.08 for LO). Data were subjected to ANOVA using the PROC MIXED program in SAS software. Differences among groups observed at ?62 DFC were almost maintained throughout the period of interest, but AG peaked before calving. According to the level of acute-phase proteins (haptoglobin, ceruloplasmin, albumin, cholesterol, retinol-binding protein), bilirubin, and paraoxonase, a generally overall lower inflammatory condition was found in HI and IN than in the LO group immediately after the dry-off but also after calving. The HI cows had greater milk yield than LO cows, but no differences were observed in milk composition. The somatic cell count reflected the AG ratio trend, with higher values in LO than IN and HI either before dry-off or after calving. Fertility was better in HI cows, with fewer days open and services per pregnancy than IN and LO cows. Overall, cows with high AG before dry-off showed an improved adaptation to the new lactation, as demonstrated by a reduced systemic inflammatory response and increased milk yield than cows with low AG. In conclusion, the AG ratio before dry-off might represent a rapid and useful proxy to evaluate the innate immune status and likely the ability to adapt while switching from the late lactation to the nonlactating phase and during the transition period with emphasis on early lactation.  相似文献   

14.
The objectives of this study were to describe the lying behavior of primiparous dairy cows under pasture-based systems during the pre- and postcalving period and characterize the association of lying behavior and analytes related to energy metabolism during this period with claw horn disruption lesion development later in lactation. Our convenience sample included 39 primiparous Holstein cows from 3 commercial farms that were assessed for body condition score (BCS; 5-point scale, 0.25-point increments) and had blood collected at wk ?3, ?2, ?1, 1, 2, and 3 relative to calving date. Blood samples were assayed for nonesterified fatty acids, β-hydroxybutyrate (BHB), and cholesterol concentrations. Electronic data loggers (HOBO Pendant G Acceleration, Onset Computer Corporation, Bourne, MA) recorded lying behavior at 1-min intervals from 3 wk before calving to 3 wk after calving. Starting at 4 wk after calving and until 16 wk after calving, cows were examined for claw lesions at approximately 4-wk intervals. Sole lesions and white line lesions were scored on a 0 to 10 scale. Of the 39 primiparous cows, 19 cows scored 0 at all exams during the entire study period and 20 cows had at least 1 severe lesion (score ≥4) between 8 and 16 wk after calving. Time spent lying before calving averaged 10.3 ± 0.3 h/d, but declined to 7.3 ± 0.3 h/d after calving (least squares means ± standard error). At calving, we noted an increase in the number of lying bouts (12.9 ± 0.45 bouts/d) compared with the pre- and postcalving averages of 11.6 (±0.53) and 9.1 (±0.47) bouts, respectively. Cows that developed claw lesions later in mid lactation spent less time lying down than cows without lesions during wk 3 after calving compared with healthy cows (7.29 ± 0.22 vs. 8.51 ± 0.16 h/d). Lesion cows had fewer lying bouts per day, and these bouts were of longer duration than no-lesion cows after calving. Increased odds of lesion were found to be associated with shorter lying times and fewer number of lying bouts during wk 3 (odds ratio = 1.23). Nonesterified fatty acids (747 ± 58 vs. 990 ± 86.85 µmol/L) and BHB (0.77 ± 0.06 vs. 0.60 ± 0.04 mmol/L) concentrations during wk 1 were greater in cows that developed claw lesions relative to cows that did not develop lesions. The BHB concentrations also remained higher in wk 2 for cows that developed claw lesions (0.63 ± 0.04 vs. 0.46 ± 0.03 mmol/L) compared with cows that did not develop any lesions. Cows that developed lesions experienced greater losses in BCS from wk ?3 to 3 than cows without lesions (0.74 ± 0.01 and 0.61 ± 0.01 BCS change, respectively). In summary, changes in lying behavior and energy metabolic status after calving were associated with claw horn disruption lesions in mid-lactation primiparous cows under pasture-based systems.  相似文献   

15.
The present study aimed to determine whether the improvement in postpartum energy balance frequently reported in cows under short dry period management could be due to an improvement in ruminal function related to the reduction in the number of diet changes before calving. Six multiparous and 6 primiparous Holstein cows equipped with ruminal cannula were assigned to 6 blocks of 2 cows each according to parity, projected milk production at 305 d, and expected calving date. Within each block, cows were randomly assigned to either a conventional (CDP; 63.2 ± 2.0 d) or a short dry period (SDP; 35.2 ± 2.0 d) management in a randomized complete block design. The CDP cows were fed a far-off diet until 28 d before calving, followed by a prepartum diet, whereas SDP cows received only the prepartum diet. After calving, both groups were fed the same lactation diet. Milk yield and dry matter intake (DMI) were recorded daily and milk composition, weekly. Blood samples were taken twice a week during the first 4 wk postcalving and weekly otherwise. Omasal and ruminal samples were collected approximately 3 wk prior and 3 wk after calving. From 28 d before calving until calving, when the 2 groups of cows were fed the same prepartum diet, there was no effect of the dry period length management on DMI, plasma concentrations of β-hydroxybutyrate, nonesterified fatty acids, and glucose and nutrient digestibility in the rumen. However, CDP cows tended to have lower ruminal pH and higher ruminal concentrations of total volatile fatty acids than SDP cows. From calving to 60 d in milk, daily DMI was higher for SDP than for CDP cows (22.3 ± 0.44 vs. 20.7 ± 0.30 kg), but milk production and milk concentrations and yields of fat, protein, and total solids were not affected by the dry period length management. After calving, body weight loss was reduced and body condition score tended to increase more rapidly for SDP than for CDP cows. Nutrient digestibility in the rumen, expressed in kilograms per day, was greater or tended to be greater for SDP cows, but differences were no longer significant when expressed per unit of nutrient ingested. The decrease in plasma nonesterified fatty acids and β-hydroxybutyrate in SDP cows without effect on milk yield suggests an improved energy balance likely due to greater DMI. Results from the present study seem to indicate that reducing the number of diet changes before calving could facilitate ruminal adaptation to the lactation diet and improve energy balance postpartum.  相似文献   

16.
This experiment was conducted to compare conventional (CON; 21 d) and shortened (SH; 10 d) close-up period, and evaluate the effect of shortened close-up period combined with feeding different metabolizable protein (MP) levels on dry matter (DM) intake, metabolic status, and performance of dairy cows. Forty-eight multiparous Holstein cows with similar parity, body weight (BW), and previous lactation milk yield were divided into 2 groups. The first group (n = 24) received the far-off diet from ?60 to ?21 d (CON), and the second group (n = 24) received same far-off diet from ?60 to ?10 d (SH) relative to expected parturition. Cows were then moved to individual stalls and randomly allocated to 1 of 3 close-up diets: low MP diet (LMP; MP = 79 g/kg of DM), medium MP diet (MMP; MP = 101 g/kg of DM), or high MP diet (HMP; MP = 118 g/kg of DM). Treatments were used in a 2 × 3 factorial arrangement with 2 lengths of close-up period (CON and SH) and 3 levels of MP (LMP, MMP, and HMP). All diets were fed for ad libitum intake during the close-up period. After calving, all cows received the same fresh cow diet. We found no interaction between close-up period length and MP levels for traits, except for postpartum serum fatty acids and β-hydroxybutyrate (BHB). The concentrations of postpartum serum fatty acids and BHB were higher on LMP than MMP and HMP diets in SH group. The cows of the SH group tended to produce less colostrum in the first milking than cows in CON group. The length of close-up period did not affect pre- and postpartum DM intake or energy balance of cows during the last week of prepartum, but cows of the CON group had greater BW changes during the last 3 wk before parturition than cows in SH group. Cows fed MMP and HMP diets consumed 1.2 and 1 kg more DM than for those fed LMP prepartum, respectively. The concentrations of prepartum BHB and Ca were higher for SH cows than CON group cows. Except for blood urea N concentration, no other blood metabolite in prepartum was affected by dietary MP. We found no effects of close-up period length or MP levels in the close-up diet on urinary pH, purine derivative excretion, and microbial N flow. Postpartum, milk yield was not affected by close-up period length, but cows in CON group tended to have higher 4% fat-corrected milk yield, had higher milk fat content and yield, had greater BW and body condition score loss, and higher energy negative balance than cows in the SH group. Cows fed MMP diet ate 1.8 kg more DM and yielded 3.37 kg more milk than those fed the LMP diet. Milk fat, protein, and lactose content, milk urea N, and somatic cell count were not affected by MP levels, but the yield of milk protein and lactose were higher on MMP diet than on LMP diet. Concentrations of postpartum serum fatty acids and BHB were decreased by shortening the close-up period length, but glucose, cholesterol, and triglyceride were similar between close-up groups. During the postpartum period, serum fatty acids, BHB, aminotransferase, and Ca concentrations were decreased by increasing the MP levels in the close-up diet. It appears from this data set that multiparous cows will benefit from a shortened close-up period, and feeding a moderate MP diet could improve DM intake, milk yield, and metabolic status of periparturient dairy cows.  相似文献   

17.
The objectives of this study were to determine the effect of calving body condition score (BCS) on cow health during the transition period in a pasture-based dairying system. Feed inputs were managed during the second half of the previous lactation so that BCS differed at drying off (BCS 5.0, 4.0, and 3.0 for high, medium, and low treatments, respectively: a 10-point scale); feed allowance was managed after cows were dried off, such that the BCS differences established during lactation remained at the subsequent calving (BCS 5.5, 4.5, and 3.5; n = 20, 18, and 19, for high, medium, and low treatments, respectively). After calving, cows were allocated pasture and pasture silage to ensure grazing residuals >1,600 kg of DM/ha. Milk production was measured weekly; blood was sampled regularly pre- and postpartum to measure indicators of health, and udder and uterine health were evaluated during the 6 wk after calving. Milk weight, fat, protein, and lactose yields, and fat content increased with calving BCS during the first 6 wk of lactation. The effect of calving BCS on the metabolic profile was nonlinear. Before calving, cows in the low group had lower mean plasma β-hydroxybutyrate and serum Mg concentrations and greater mean serum urea than cows in the medium and high BCS groups, which did not differ from each other. During the 6 wk after calving, cows in the low group had lower serum albumin and fructosamine concentrations than cows in the other 2 treatment groups, whereas cows in the low- and medium-BCS groups had proportionately more polymorphonucleated cells in their uterine secretions at 3 and 5 wk postpartum than high-BCS cows. In comparison, plasma β-hydroxybutyrate and nonesterified fatty acid concentrations increased linearly in early lactation with calving BCS, consistent with a greater negative energy balance in these cows. Many of the parameters measured did not vary with BCS. The results highlight that calving BCS and, therefore, BCS through early lactation are not effective indicators of functional welfare, with the analyses presented indicating that both low and high BCS at calving will increase the risk of disease: cows in the low group were more prone to reproductive compromise and fatter cows had an increased risk of metabolic diseases. These results are important in defining the welfare consequences of cow BCS.  相似文献   

18.
《Journal of dairy science》2019,102(8):7398-7407
The present study investigated the effect of straw yard housing during the dry period and 2 d of additional maternity pen housing postcalving on lying and feeding behavior and calving difficulty in Holstein dairy cows. In this study, 122 multiparous cows were moved to either a straw yard or into freestall housing 4 wk before their expected calving date. Cows that had been housed in straw yards stayed in the maternity pen for an additional 2 d after their calving day, but cows that had been housed in freestalls were moved to the general lactation group the morning after calving. Lying time, lying bouts, feeding time, number of feeder visits, feed intake, feeding rate, and assisted calvings were recorded. Observations were divided into 2 periods: precalving (the 4-wk dry period before calving) and postcalving (the day of calving and the 2 d after). During the precalving period, cows housed in straw yards showed a higher number of lying bouts but no difference in lying time compared with cows housed in freestalls. Cows that were housed longer in the straw-bedded maternity pen postcalving spent more time lying during the 2 d postcalving and had a higher number of lying bouts on the day of calving than cows moved to the freestall area on the day postcalving. Additionally, cows that were housed longer in the maternity pen had a slower feeding rate and longer total feeding time during the 2 d after calving than cows with a shorter stay in the maternity pen. We found no difference in the number of assisted calvings. This study suggests that straw yard housing during the dry period may facilitate the transition between standing and lying. Furthermore, the extended stay in the maternity pen postcalving increased lying time, the number of lying bouts, and feeding time, but decreased feeding rate compared with cows that were moved to the general lactation group on the day postcalving. These results suggest potential recovery benefits with an extended stay in a maternity pen postcalving. However, further studies are needed to separate the effects of housing in the dry period and the effects of an extended housing in individual maternity pens.  相似文献   

19.
Effects of dietary fat supplementation prepartum on liver lipids and metabolism in dairy cows are contradictory. Thus, we examined in 18 German Holstein cows (half-sib; first lactation 305-d milk yield >9,000 kg) whether dietary fat:carbohydrate ratio during the last trimester of gestation affects lipid metabolism and milk yield. The diets were formulated to be isoenergetic and isonitrogenous but differed in rumen-protected fat (FD; 28 and 46.5 g/kg of dry matter during far-off and close-up dry period; mainly C16:0 and C18:1) and starch concentration [carbohydrate diet (CD); 2.3 times as much starch as FD]. Diets were given ad libitum starting 12 wk before expected parturition. After parturition all cows were fed a single lactation diet ad libitum for 14 wk. With the FD treatment, dry matter intake was depressed prepartum, milk yield during first 4 wk of lactation was lower (36.9 vs. 41.0 kg/d), and postpartum energy balance during this period was more negative. During the first 4 wk, cows in the FD group had lower lactose percentage and yield but higher milk fat, whereas milk protein and fat yield as well as energy-corrected milk did not differ. Between wk 5 and 14, milk fat and milk protein percentage was lower in CD than in FD. Milk fat C14:0 was lower and C16:1 was higher in the FD group. For FD cows, plasma triacylglycerol, nonesterified fatty acids, and cholesterol concentrations were higher prepartum, whereas plasma β-hydroxybutyrate and glucose concentrations were lower. During the first 10 d after parturition, plasma triacylglycerol concentration was higher in FD, and prepartum plasma glucose and cholesterol differences persisted during the first 14 wk of lactation. Irrespective of prepartum nutrient composition, concentrations of plasma leptin and subcutaneous fat leptin mRNA decreased between −10 d to +10 d relative to parturition, and liver lipids and glycogen reached maximum and minimal values, respectively, 10 d after parturition. Acetyl-coenzyme A carboxylase α mRNA abundance in subcutaneous fat decreased between −10 d to +1 d relative to parturition by 97%, whereas it was generally much lower in the liver and remained at a low level until wk 14 of lactation. In conclusion, feeding a diet containing rumen-protected fat during late lactation and dry period until calving negatively affected dry matter intake, energy balance, and milk yield during subsequent lactation, did not change acetyl-coenzyme A carboxylase α mRNA abundance in subcutaneous fat, and was not beneficial for liver lipid accumulation.  相似文献   

20.
Our objectives were to evaluate the effects of prepartum monensin supplementation and dry-period nutritional strategy on the postpartum productive performance of cows fed monensin during lactation. A total of 102 Holstein cows were enrolled in the experiment (32 primiparous and 70 multiparous). The study was a completely randomized design, with randomization restricted to balance for parity, body condition score, and expected calving date. A 2 × 2 factorial arrangement of prepartum treatments was used; the variables of interest were prepartum feeding strategy [controlled-energy diet throughout the dry period (CE) vs. controlled-energy diet from dry-off to 22 d before expected parturition, followed by a moderate-energy close-up diet from d 21 before expected parturition through parturition (CU)] and prepartum monensin supplementation [0 g/t (control, CON) or 24.2 g/t (MON); Rumensin; Elanco Animal Health, Greenfield, IN]. Lactation diets before and after the dry period contained monensin at 15.4 g/t. During the close-up period, cows fed CU had greater DM and NEL intakes than cows fed CE. Calf BW at birth tended to be greater for cows fed CU than for those fed CE but was not affected by MON supplementation. Diet did not affect calving difficulty score, but cows supplemented with MON had an increased calving difficulty score. We found a tendency for a MON × parity interaction for colostral IgG concentration, such that multiparous MON cows tended to have lower IgG concentration than CON cows, but colostral IgG concentration for primiparous MON and CON cows did not differ. Postpartum milk yield did not differ between diets but tended to be greater for cows supplemented with MON. Milk fat and lactose content were greater for cows fed CU than for those fed CE, and lactose content and yield were increased for cows supplemented with MON. Solids-corrected and fat-corrected milk yields were increased by MON supplementation, but were not affected by diet. Overall means for postpartum DMI did not differ by diet or MON supplementation. The CU diet decreased the concentration of nonesterified fatty acids during the close-up period but increased it postpartum. Neither diet nor monensin affected β-hydroxybutyrate or liver composition. Overall, postpartum productive performance differed little between prepartum dietary strategies, but cows fed MON had greater energy-corrected milk production. In herds fed monensin during lactation, monensin should also be fed during the dry period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号