首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zinc-fortified Cheddar cheese containing 228 mg of zinc/kg of cheese was manufactured from milk that had 16 mg/kg food-grade zinc sulfate added. Cheeses were aged for 2 mo. Culture activity during cheese making and ripening, and compositional, chemical, texture, and sensory characteristics were compared with control cheese with no zinc sulfate added to the cheese milk. Compositional analysis included fat, protein, ash, moisture, zinc, and calcium determinations. The thiobarbituric acid (TBA) assay was conducted to determine lipid oxidation during aging. Texture was analyzed by a texture analyzer. An untrained consumer panel of 60 subjects evaluated the cheeses for hardness, off-flavors, appearance, and overall preference using a 9-point hedonic scale. Almost 100% of the zinc added to cheese milk was recovered in the zinc-fortified cheese. Zinc-fortified Cheddar cheese had 5 times more zinc compared with control cheese. Zinc-fortified cheese had higher protein and slightly higher fat and ash contents, whereas moisture was similar for both cheeses. Zinc fortification did not affect culture activity during cheese making or during the 2-mo aging period. The TBA value of control cheese was higher than that of zinc-fortified cheese at the end of ripening. Although zinc-fortified cheese was harder as determined by the texture analyzer, the untrained consumer panel did not detect differences in the sensory attributes and overall quality of the cheeses. Fortification of 16 mg/kg zinc sulfate in cheese milk is a suitable approach to fortifying Cheddar cheese without changing the quality of Cheddar cheese.  相似文献   

2.
The objective of this study was to compare the effects of vacuum-condensed (CM) and ultrafiltered (UF) milk on some compositional and functional properties of Cheddar cheese. Five treatments were designed to have 2 levels of concentration (4.5 and 6.0% protein) from vacuum-condensed milk (CM1 and CM2) and ultrafiltered milk (UF1 and UF2) along with a 3.2% protein control. The samples were analyzed for fat, protein, ash, calcium, and salt contents at 1 wk. Moisture content, soluble protein, meltability, sodium dodecyl sulfate-PAGE, and counts of lactic acid bacteria and nonstarter lactic acid bacteria were performed on samples at 1, 18, and 30 wk. At 1 wk, the moisture content ranged from 39.2 (control) to 36.5% (UF2). Fat content ranged from 31.5 to 32.4% with no significant differences among treatments, and salt content ranged from 1.38 to 1.83% with significant differences. Calcium content was higher in UF cheeses than in CM cheeses followed by control, and it increased with protein content in cheese milk. Ultrafiltered milk produced cheese with higher protein content than CM milk. The soluble protein content of all cheeses increased during 30 wk of ripening. Condensed milk cheeses exhibited a higher level of proteolysis than UF cheeses. Sodium dodecyl sulfate-PAGE showed retarded proteolysis with increase in level of concentration. The breakdown of alphas1- casein and alphas1-I-casein fractions was highest in the control and decreased with increase in protein content of cheese milk, with UF2 being the lowest. There was no significant degradation of beta-casein. Overall increase in proteolytic products was the highest in control, and it decreased with increase in protein content of cheese milk. No significant differences in the counts of lactic starters or nonstarter lactic acid bacteria were observed. Extent as well as method of concentration influenced the melting characteristics of the cheeses. Melting was greatest in the control cheeses and least in cheese made from condensed milk and decreased with increasing level of milk protein concentration. Vacuum condensing and ultrafiltration resulted in Cheddar cheeses of distinctly different quality. Although both methods have their advantages and disadvantages, the selection of the right method would depend upon the objective of the manufacturer and intended use of the cheese.  相似文献   

3.
4.
The U.S. Food and Drug Administration Standard of Identity for Cheddar cheeses requires pasteurization of the milk, or as an alternative treatment, a minimum 60-day aging at > or =2 degrees C for cheeses made from unpasteurized milk, to reduce the number of viable pathogens that may be present to an acceptable risk. The objective of this study was to investigate the adequacy of the 60-day minimum aging to reduce the numbers of viable pathogens and evaluate milk subpasteurization heat treatment as a process to improve the safety of Cheddar cheeses made from unpasteurized milk. Cheddar cheese was made from unpasteurized milk inoculated with 10(1) to 10(5) CFU/ml of a five-strain cocktail of acid-tolerant Escherichia coli O157:H7. Samples were collected during the cheese manufacturing process. After pressing, the cheese blocks were packaged into plastic bags, vacuum sealed, and aged at 7 degrees C. After 1 week, the cheese blocks were cut into smaller-size uniform pieces and then vacuum sealed in clear plastic pouches. Samples were plated and enumerated for E. coli O157:H7. Populations of E. coli O157:H7 increased during the cheese-making operations. Population of E. coli O157:H7 in cheese aged for 60 and 120 days at 7 degrees C decreased less than 1 and 2 log, respectively. These studies confirm previous reports that show 60-day aging is inadequate to eliminate E. coli O157:H7 during cheese ripening. Subpasteurization heat-treatment runs were conducted at 148 degrees F (64.4 degrees C) for 17.5 s on milk inoculated with E. coli O157:H7 at 10(5) CFU/ml. These heat-treatment runs resulted in a 5-log E. coli O157: H7 reduction.  相似文献   

5.
The pH of cheese is determined by the amount of lactose fermented and the buffering capacity of the cheese. The buffering capacity of cheese is largely determined by the protein contents of milk and cheese and the amount of insoluble calcium phosphate in the curd, which is related to the rate of acidification. The objective of this study was to standardize both the lactose and casein contents of milk to better control final pH and prevent the development of excessive acidity in Cheddar cheese. This approach involved the use of low-concentration factor ultrafiltration of milk to increase the casein content (~5%), followed by the addition of water, ultrafiltration permeate, or both to the retentate to adjust the lactose content. We evaluated milks with 4 different lactose-to-casein ratios (L:CN): 1.8 (control milk), 1.4, 1.1, and 0.9. All cheesemilks had similar total casein (2.3%) and fat (3.4%) contents. These milks were used to make milled-curd Cheddar cheese, and we evaluated cheese composition, texture, functionality, and sensory properties over 9 mo of ripening. Cheeses made from milks with varying levels of L:CN had similar moisture, protein, fat, and salt contents, due to slight modifications during manufacture (i.e., cutting the gel at a smaller size than control) as well as control of acid development at critical steps (i.e., cutting the gel, whey drainage, salting). As expected, decreasing the L:CN led to cheeses with lower lactic acid, residual lactose, and insoluble Ca contents, as well as a substantial pH increase during cheese ripening in cheeses. The L:CN ratio had no significant effect on the levels of primary and secondary proteolysis. Texture profile analysis showed no significant differences in hardness values during ripening. Maximum loss tangent, an index of cheese meltability, was lower until 45 d for the L:CN 1.4 and 0.9 treatments, but after 45 d, all reduced L:CN cheeses had higher maximum loss tangent values than the control cheese (L:CN 1.8). Sensory analyses showed that cheeses made from milks with reduced L:CN contents had lower acidity, sourness, sulfury notes, and chewdown cohesiveness. Standardization of milk to a specific L:CN ratio, while maintaining a constant casein level in the milk, would allow Cheddar cheese manufacturers to have tighter control of pH and acidity.  相似文献   

6.
The effect of microfiltration (MF) on proteolysis, hardness, and flavor of Cheddar cheese during 6 mo of aging was determined. Raw skim milk was microfiltered two-fold in two cheese making trials. In trial 1, four vats of cheese were made in 1 d using unconcentrated milk (1X), 1.26X, 1.51X, and 1.82X concentration factors (CF). Casein-(CN)-to-fat ratio was constant among treatments. Proteolysis during cheese aging decreased with increasing CF due to either limitation of substrate availability for chymosin due to low moisture in the nonfat substance (MNFS), inhibition of chymosin activity by high molecular weight milk serum proteins, such as alpha2-macroglobulin, retained in the cheese or low residual chymosin in the cheese. Hardness of fresh cheese increased, and cheese flavor intensity decreased with increasing CF. In trial 2, the 1X and 1.8X CF were compared directly. Changes made in the cheese making procedure for the 1.8X CF (more chymosin and less cooking) increased the MNFS and made proteolysis during aging more comparable for the 1X and 1.8X cheeses. The significant difference in cheese hardness due to CF in trial 1 was eliminated in trial 2. In a triangle test, panelists could not differentiate between the 1X and 1.8X cheeses. Therefore, increasing chymosin and making the composition of the two cheeses more similar allowed production of aged Cheddar cheese from milk concentrated up to 1.8X by MF that was not perceived as different from aged Cheddar cheese produced without MF.  相似文献   

7.
The objectives were to reduce bitterness in reduced-fat Cheddar cheese made with an exopolysaccharide (EPS)-producing culture and study relationships among ultra-filtration (UF), residual chymosin activity (RCA), and cheese bitterness. In previous studies, EPS-producing cultures improved the textural, melting, and viscoelastic properties of reduced-fat Cheddar cheese. However, the EPS-positive cheese developed bitterness after 2 to 3 mo of ripening due to increased RCA. We hypothesized that the reduced amount of chymosin needed to coagulate UF milk might result in reduced RCA and bitterness in cheese. Reduced-fat Cheddar cheeses were manufactured with EPS-producing and nonproducing cultures using skim milk or UF milk (1.2×) adjusted to a casein:fat ratio of 1.35. The EPS-producing culture increased moisture and RCA in reduced-fat Cheddar cheese. Lower RCA was found in cheese made from UF milk compared with that in cheese made from control milk. Ultrafiltration at a low concentration rate (1.2×) produced EPS-positive, reduced-fat cheese with similar RCA to that in the EPS-negative cheese. Slower proteolysis was observed in UF cheeses compared with non-UF cheeses. Panelists reported that UF EPS-positive cheese was less bitter than EPS-positive cheese made from control milk. This study showed that UF at a low concentration factor (1.2×) could successfully reduce bitterness in cheese containing a high moisture level. Because this technology reduced the RCA level (per g of protein) to a level similar to that in the control cheeses, the contribution of chymosin to cheese proteolysis would be similar in both cheeses.  相似文献   

8.
通过建立快速成熟干酪模型,采用固相微萃取法提取传统藏灵菇发酵的切达干酪模型与商品发酵剂制作的切达干酪模型中挥发性成分,并结合气相色谱-质谱联用技术和气相色谱-嗅闻技术对萃取成分进行鉴定,结果表明醇类和酯类是藏灵菇发酵切达干酪成熟过程中的主要风味物质。藏灵菇发酵切达干酪模型中风味物质的种类和含量都明显高于商业发酵剂制作的切达干酪模型,其中酯类物质的变化最为显著。感官评价和风味分析结果表明,藏灵菇发酵切达干酪模型中酯类和醇类物质种类和含量更为丰富,风味更强,水果香味更浓郁,还具有酒香味。  相似文献   

9.
The objective of this study was to evaluate the effect of capsular and ropy exopolysaccharide (EPS)-producing strains of Lactococcus lactis ssp. cremoris on textural and microstructural attributes during ripening of 50%-reduced-fat Cheddar cheese. Cheeses were manufactured with added capsule- or ropy-forming strains individually or in combination. For comparison, reduced-fat cheese with or without lecithin added at 0.2% (wt/vol) to cheese milk and full-fat cheeses were made using EPS-nonproducing starter, and all cheeses were ripened at 7°C for 6 mo. Exopolysaccharide-producing strains increased cheese moisture retention by 3.6 to 4.8% and cheese yield by 0.28 to 1.19 kg/100 kg compared with control cheese, whereas lecithin-containing cheese retained 1.4% higher moisture and had 0.37 kg/100 kg higher yield over the control cheese. Texture profile analyses for 0-d-old cheeses revealed that cheeses with EPS-producing strains had less firm, springy, and cohesive texture but were more brittle than control cheeses. However, these effects became less pronounced after 6 mo of ripening. Using transmission electron microscopy, fresh and aged cheeses with added EPS-producing strains showed a less compact protein matrix through which larger whey pockets were dispersed compared with control cheese. The numerical analysis of transmission electron microscopy images showed that the area in the cheese matrix occupied by protein was smaller in cheeses with added EPS-producing strains than in control cheese. On the other hand, lecithin had little impact on both cheese texture and microstructure; after 6 mo, cheese containing lecithin showed a texture profile very close to that of control reduced-fat cheese. The protein-occupied area in the cheese matrix did not appear to be significantly affected by lecithin addition. Exopolysaccharide-producing strains could contribute to the modification of cheese texture and microstructure and thus modify the functional properties of reduced-fat Cheddar cheese.  相似文献   

10.
Gas-flushed packaging is commonly used for cheese shreds and cubes to prevent aggregation and loss of individual identity. Appearance of a white haze on cubed cheese is unappealing to consumers, who may refrain from buying, resulting in lost revenue to manufacturers. The objective of this study was to determine whether gas flushing of Cheddar cheese contributes to the occurrence of calcium lactate crystals (CLC). Cheddar cheese was manufactured using standard methods, with addition of starter culture, annatto, and chymosin. Two different cheese milk compositions were used: standard (lactose:protein = 1.47, protein:fat = 0.90, lactose = 4.8%) and ultrafiltered (UF; lactose:protein = 1.23, protein:fat = 0.84, lactose = 4.8%), with or without adjunct Lactobacillus curvatus. Curds were milled when whey reached 0.45% titratable acidity, and pressed for 16 h. After aging at 7.2°C for 6 mo, cheeses were cubed (1 × 1 × 4 cm) and either vacuum-packaged or gas-flushed with carbon dioxide, nitrogen, or a 50:50 mixture of carbon dioxide and nitrogen, then aged for an additional 3 mo. Heavy crystals were observed on surfaces of all cubed cheeses that were gas-flushed, but not on cheeses that were vacuum-packaged. Cheeses without Lb. curvatus exhibited l(+)-CLC on surfaces, whereas cheeses with Lb. curvatus exhibited racemic mixtures of l(+)/d(−)-CLC throughout the cheese matrices. The results show that gas flushing (regardless of gas composition), milk composition, and presence of nonstarter lactic acid bacteria, can contribute to the development of CLC on cheese surfaces. These findings stress the importance of packaging to cheese quality.  相似文献   

11.
Numerous commercial enzyme‐linked immunosorbent assay (ELISA) kits exist to quantitatively detect bovine milk residues in foods. Milk contains many proteins that can serve as ELISA targets including caseins (α‐, β‐, or κ‐casein) and whey proteins (α‐lactalbumin or β‐lactoglobulin). Nine commercially‐available milk ELISA kits were selected to compare the specificity and sensitivity with 5 purified milk proteins and 3 milk‐derived ingredients. All of the milk kits were capable of quantifying nonfat dry milk (NFDM), but did not necessarily detect all individual protein fractions. While milk‐derived ingredients were detected by the kits, their quantitation may be inaccurate due to the use of different calibrators, reference materials, and antibodies in kit development. The establishment of a standard reference material for the calibration of milk ELISA kits is increasingly important. The appropriate selection and understanding of milk ELISA kits for food analysis is critical to accurate quantification of milk residues and informed risk management decisions.  相似文献   

12.
The present study was undertaken to study the effects of application of natural wood smoke on ripening of Cheddar cheese, and to determine the effects of smoking before or after ripening on cheese quality. A 20-kg block of Cheddar cheese obtained immediately after pressing was divided into six approximately 3-kg blocks and ripened at 8 degrees C for up to 270 d. One 3-kg block was taken after 1 d, 1, 3, 6, or 9 mo and smoked for 20 min, then returned to the ripening room for further ripening. Cheeses were sampled at intervals for lactobacilli counts, moisture, pH, and proteolysis. Sensory analysis was conducted on 6 and 9-mo-old cheeses by a trained sensory panel (n = 7). Results show that application of natural wood smoke did not significantly affect cheese pH or primary proteolysis during ripening. However, secondary proteolysis as assessed by the concentrations of free amino acids was generally higher in smoked cheeses than in control cheeses after 6 mo of ripening. Cheese smoked after 6 mo of ripening had better smoked flavor than that smoked after 9 mo of ripening. Cheese smoked after 3 mo of age and further ripened for 6 mo had the highest smoked flavor intensity. It is concluded that it is best to smoke cheese after ripening for at least 3 mo.  相似文献   

13.
Accelerated ripened Cheddar cheese was prepared by blending two parts of shredded curd made from standardized cow's milk with one part of 5.2% NaCl solution and ripening at 30°C for 8 days. On a dry matter basis, protein and fat of accelerated ripened cheese were similar to that of conventionally ripened Cheddar cheese, while lactose and total ash were greater. Similar observation was made for processed cheese samples. No change in vitamin A or in riboflavin but a fourfold increase in folic acid was observed during accelerated ripening. Protein efficiency ratio, net protein utilization and digestibility coefficient by rat tests were slightly but significantly higher for conventionally ripened processed cheese. However, no difference in biological value was observed.  相似文献   

14.
Eight hundred ninety consumers at a local food festival were surveyed about their specialty cheese purchasing behavior and asked to taste and rate, through nonforced choice preference, 1 of 4 cheese pairs (Cheddar and Gouda) made from pasteurized and raw milks. The purpose of the survey was to examine consumers’ responses to information on the safety of raw milk cheeses. The associated consumer test provided information about specialty cheese consumers’ preferences and purchasing behavior. Half of the consumers tested were provided with cheese pairs that were identified as being made from unpasteurized and pasteurized milk. The other half evaluated samples that were identified only with random 3-digit codes. Overall, more consumers preferred the raw milk cheeses than the pasteurized milk cheeses. A larger portion of consumers indicated preferences for the raw milk cheese when the cheeses were labeled and thus they knew which samples were made from raw milk. Most of the consumers tested considered the raw milk cheeses to be less safe or did not know if raw milk cheeses were less safe. After being informed that the raw milk cheeses were produced by a process approved by the FDA (i.e., 60-d ripening), most consumers with concerns stated that they believed raw milk cheeses to be safe. When marketing cheese made from raw milk, producers should inform consumers that raw milk cheese is produced by an FDA-approved process.  相似文献   

15.
A current industry goal is to produce a 75 to 80% fat-reduced Cheddar cheese that is tasty and appealing to consumers. Despite previous studies on reduced-fat cheese, information is critically lacking in understanding the flavor and flavor chemistry of reduced-fat and nonfat Cheddar cheeses and how it differs from its full-fat counterpart. The objective of this study was to document and compare flavor development in cheeses with different fat contents so as to quantitatively characterize how flavor and flavor development in Cheddar cheese are altered with fat reduction. Cheddar cheeses with 50% reduced-fat cheese (RFC) and low-fat cheese containing 6% fat (LFC) along with 2 full-fat cheeses (FFC) were manufactured in duplicate. Cheeses were ripened at 8°C and samples were taken following 2 wk and 3, 6, and 9 mo for sensory and instrumental volatile analyses. A trained sensory panel (n = 10 panelists) documented flavor attributes of cheeses. Volatile compounds were extracted by solid-phase microextraction or solvent-assisted flavor evaporation followed by separation and identification using gas chromatography-mass spectrometry and gas chromatography-olfactometry. Selected compounds were quantified using external standard curves. Sensory properties of cheeses were distinct initially but more differences were documented as cheeses aged. By 9 mo, LFC and RFC displayed distinct burnt/rosy flavors that were not present in FFC. Sulfur flavor was also lower in LFC compared with other cheeses. Forty aroma-active compounds were characterized in the cheeses by headspace or solvent extraction followed by gas chromatography-olfactometry. Compounds were largely not distinct between the cheeses at each time point, but concentration differences were evident. Higher concentrations of furanones (furaneol, homofuraneol, sotolon), phenylethanal, 1-octen-3-one, and free fatty acids, and lower concentrations of lactones were present in LFC compared with FFC after 9 mo of ripening. These results confirm that flavor differences documented between full-fat and reduced-fat cheeses are not due solely to differences in matrix and flavor release but also to distinct differences in ripening biochemistry, which leads to an imbalance of many flavor-contributing compounds.  相似文献   

16.
《Journal of dairy science》2019,102(12):10867-10876
Donkey milk is characterized by low contents of total solids, fat, and caseins, especially κ-casein, which results in formation of a very weak gel upon renneting. The objective of this study was to evaluate the effect of fortification of donkey milk with microbial transglutaminase (MTGase) for cheesemaking in relation to different enzyme addition protocols (patterns, PAT). Four independent trials were performed using MTGase (5.0 U/g of milk protein) according to the following experimental patterns: control (no MTGase addition); MTGase addition (40°C) 15 min before starter inoculation (PAT1); addition of MTGase to milk simultaneously with starter culture (40°C) (PAT2); and MTGase addition simultaneously with rennet (42°C) in acidified milk (pH 6.3) (PAT3). Evolution of pH during acidification, cheesemaking parameters, and proximal composition and color of cheese at 24 h were recorded. The protein fractions of cheese and whey were investigated by urea-PAGE and sodium dodecyl sulfate-PAGE. Addition of MTGase had no significant effect on moisture, protein, fat, or cheese yield. The addition of MTGase with rennet (PAT3) improved curd firmness compared with the control. Among the different patterns of MTGase addition, PAT3 reduced gel formation time, time between rennet addition and cheese molding, and weight loss of cheese at 24 h. The PAT3 treatment also resulted in the lowest lightness and highest yellowness color values of the cheese. Sodium dodecyl sulfate-PAGE of cheeses revealed that MTGase modified the protein pattern in the high-molecular-weight zone (range 37–75 kDa) compared with the control. Of the MTGase protocols, PAT3 showed better casein retention in cheese, as confirmed by the lanes of α- and β-caseins in the electropherogram of the whey, which was subtler for this protocol. In conclusion, MTGase may be used in cheese production from donkey milk to improve curd firmness; MTGase should be added simultaneously with the rennet.  相似文献   

17.
ABSTRACT:  Cheddar cheese is a widely popular food in the United States. This product is produced in facilities across the United States and often marketed based on region of manufacture, implying that regional differences in flavor character of the cheese exist. This study was conducted to determine if regional differences in flavor exist in the aged U.S. Cheddar cheeses. Three times per year for 2 y, triplicate 18-kg blocks of Cheddar cheese (< 60 d old) were obtained from 19 manufacturing facilities located in 4 major cheese- producing regions/states: California, Northwest, Midwest, and Northeast. A trained sensory panel documented the flavor characteristics of cheeses after 6-, 9-, 12-, 18-, and 24-mo ripening at 7 °C. Regional differences were observed for specific flavors for cheeses manufactured in the Northwest, Midwest, and Northeast across ripening ( P < 0.05), but the specific flavors responsible for these effects were not consistent across ripening. Similarly, cheese make procedure effects were also observed for specific flavors across ripening ( P < 0.05), but these differences were also not consistent across ripening. The impact of region and cheese make procedure on flavor of the aged Cheddar cheeses was small in comparison to consistently documented, facility-specific flavor differences ( P < 0.0001). Flavor profiles of aged Cheddar cheeses were most strongly influenced by practices specific to manufacturing facility rather than region of manufacture.  相似文献   

18.
A detailed investigation was undertaken to determine the effects of four single starter strains, Lactococcus lactis subsp. lactis 303, Lc. lactis subsp. cremoris HP, Lc. lactis subsp. cremoris AM2, and Lactobacillus helveticus DPC4571 on the proteolytic, lipolytic and sensory characteristics of Cheddar cheese. Cheeses produced using the highly autolytic starters 4571 and AM2 positively impacted on flavour development, whereas cheeses produced from the poorly autolytic starters 303 and HP developed off-flavours. Starter selection impacted significantly on the proteolytic and sensory characteristics of the resulting Cheddar cheeses. It appeared that the autolytic and/or lipolytic properties of starter strains also influenced lipolysis, however lipolysis appeared to be limited due to a possible lack of availability or access to suitable milk fat substrates over ripening. The impact of lipolysis on the sensory characteristics of Cheddar cheese was unclear, possibly due to minimal differences in the extent of lipolysis between the cheeses at the end of ripening. As anticipated seasonal milk supply influenced both proteolysis and lipolysis in Cheddar cheese. The contribution of non-starter lactic acid bacteria towards proteolysis and lipolysis over the first 8 months of Cheddar cheese ripening was negligible.  相似文献   

19.
20.
This study was carried out to investigate the influence of salt content on cholesterol-reduced Cheddar cheese obtained by a treatment with crosslinked β-cyclodextrin (β-CD) and to find if the ripening process was accelerated in cholesterol-reduced cheese. The crosslinked β-CD used was made by adipic acid. A primary study indicated that the chemical and rheological properties were not changed by the salt addition and the composition of Cheddar cheese treated with crosslinked β-CD was similar to untreated Cheddar cheese. Approximately 91 to 92% cholesterol reduction was observed in the cheeses that were treated using β-CD. In a subsequent study, we found accelerated ripening by the crosslinked β-CD based on the productions of short-chain free fatty acids and free amino acids. In rheological properties, elasticity, cohesiveness, and gumminess scores in the cholesterol-reduced Cheddar cheese were significantly greater at 5 wk ripening than those in the control at 4 mo ripening. At the early stage of ripening, most flavor properties such as rancidity, bitterness, and off-flavor in the cholesterol-reduced cheese were greater. With ripening, however, those scores changed to similar or lower scores than those in the control. The present study indicated that the crosslinked β-CD treatment for cholesterol removal showed accelerated ripening effect on the properties of Cheddar cheese.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号