首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A decoupled augmented immersed interface method for solving incompressible two‐phase flows involving both irregular domains and interfaces is presented. In order to impose the prescribed velocity at the boundary of the irregular domain, singular force as one set of augmented variables is introduced. The velocity components at the two‐fluid interface as another set of augmented variables are introduced to satisfy the continuity condition of the velocity across the interface so that the jump conditions for the velocity and pressure are decoupled across the interface. The augmented variables and/or the forces along the interface/boundary are related to the jumps in both pressure and velocity and the jumps in their derivatives across the interface/boundary and applied to the fluid through jump conditions. The resulting augmented equation is a couple system of these two sets of augmented variables, and the direct application of the GMRES is impractical due to larger iterations. In this work, the novel decoupling of two sets of the augmented variables is proposed, and the decoupled augmented equation is then solved by the LU or the GMRES method. The Stokes equations are discretized via the finite difference method with the incorporation of jump contributions on a staggered Cartesian grid and solved by the conjugate gradient Uzawa‐type method. The numerical results show that second‐order accuracy for the velocity is confirmed. The present method has also been applied to solve for incompressible two‐phase Navier–Stokes flow with interfaces on irregular domains. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
An unstructured finite element solver to evaluate the ship‐wave problem is presented. The scheme uses a non‐structured finite element algorithm for the Euler or Navier–Stokes flow as for the free‐surface boundary problem. The incompressible flow equations are solved via a fractional step method whereas the non‐linear free‐surface equation is solved via a reference surface which allows fixed and moving meshes. A new non‐structured stabilized approximation is used to eliminate spurious numerical oscillations of the free surface. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

3.
We develop an essentially non‐oscillatory semi‐Lagrangian method for solving two‐dimensional tidal flows. The governing equations are derived from the incompressible Navier–Stokes equations with assumptions of shallow water flows including bed frictions, eddy viscosity, wind shear stresses and Coriolis forces. The method employs the modified method of characteristics to discretize the convective term in a finite element framework. Limiters are incorporated in the method to reconstruct an essentially non‐oscillatory algorithm at minor additional cost. The central idea consists in combining linear and quadratic interpolation procedures using nodes of the finite element where departure points are localized. The resulting semi‐discretized system is then solved by an explicit Runge–Kutta Chebyshev scheme with extended stages. This scheme adds in a natural way a stabilizing stage to the conventional Runge–Kutta method using the Chebyshev polynomials. The proposed method is verified for the recirculation tidal flow in a channel with forward‐facing step. We also apply the method for simulation of tidal flows in the Strait of Gibraltar. In both test problems, the proposed method demonstrates its ability to handle the interaction between water free‐surface and bed frictions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
We present in this paper a new computational method for simulation of two‐phase flow problems with moving boundaries and sharp physical interfaces. An adaptive interface‐capturing technique (ICT) of the Eulerian type is developed for capturing the motion of the interfaces (free surfaces) in an unsteady flow state. The adaptive method is mainly based on the relative boundary conditions of the zero pressure head, at which the interface is corresponding to a free surface boundary. The definition of the free surface boundary condition is used as a marker for identifying the position of the interface (free surface) in the two‐phase flow problems. An initial‐value‐problem (IVP) partial differential equation (PDE) is derived from the dynamic conditions of the interface, and it is designed to govern the motion of the interface in time. In this adaptive technique, the Navier–Stokes equations written for two incompressible fluids together with the IVP are solved numerically over the flow domain. An adaptive mass conservation algorithm is constructed to govern the continuum of the fluid. The finite element method (FEM) is used for the spatial discretization and a fully coupled implicit time integration method is applied for the advancement in time. FE‐stabilization techniques are added to the standard formulation of the discretization, which possess good stability and accuracy properties for the numerical solution. The adaptive technique is tested in simulation of some numerical examples. With the test problems presented here, we demonstrated that the adaptive technique is a simple tool for modelling and computation of complex motion of sharp physical interfaces in convection–advection‐dominated flow problems. We also demonstrated that the IVP and the evolution of the interface function are coupled explicitly and implicitly to the system of the computed unknowns in the flow domain. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
This paper presents a comprehensive finite‐element modelling approach to electro‐osmotic flows on unstructured meshes. The non‐linear equation governing the electric potential is solved using an iterative algorithm. The employed algorithm is based on a preconditioned GMRES scheme. The linear Laplace equation governing the external electric potential is solved using a standard pre‐conditioned conjugate gradient solver. The coupled fluid dynamics equations are solved using a fractional step‐based, fully explicit, artificial compressibility scheme. This combination of an implicit approach to the electric potential equations and an explicit discretization to the Navier–Stokes equations is one of the best ways of solving the coupled equations in a memory‐efficient manner. The local time‐stepping approach used in the solution of the fluid flow equations accelerates the solution to a steady state faster than by using a global time‐stepping approach. The fully explicit form and the fractional stages of the fluid dynamics equations make the system memory efficient and free of pressure instability. In addition to these advantages, the proposed method is suitable for use on both structured and unstructured meshes with a highly non‐uniform distribution of element sizes. The accuracy of the proposed procedure is demonstrated by solving a basic micro‐channel flow problem and comparing the results against an analytical solution. The comparisons show excellent agreement between the numerical and analytical data. In addition to the benchmark solution, we have also presented results for flow through a fully three‐dimensional rectangular channel to further demonstrate the application of the presented method. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
An enriched finite element method with arbitrary discontinuities in space–time is presented. The discontinuities are treated by the extended finite element method (X‐FEM), which uses a local partition of unity enrichment to introduce discontinuities along a moving hyper‐surface which is described by level sets. A space–time weak form for conservation laws is developed where the Rankine–Hugoniot jump conditions are natural conditions of the weak form. The method is illustrated in the solution of first order hyperbolic equations and applied to linear first order wave and non‐linear Burgers' equations. By capturing the discontinuity in time as well as space, results are improved over capturing the discontinuity in space alone and the method is remarkably accurate. Implications to standard semi‐discretization X‐FEM formulations are also discussed. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
We consider the Galerkin finite element method for the incompressible Navier–Stokes equations in two dimensions, where the finite‐dimensional space(s) employed consist of piecewise polynomials enriched with residual‐free bubble functions. To find the bubble part of the solution, a two‐level finite element method (TLFEM) is described and its application to the Navier–Stokes equation is displayed. Numerical solutions employing the TLFEM are presented for three benchmark problems. We compare the numerical solutions using the TLFEM with the numerical solutions using a stabilized method. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

8.
This paper introduces the use of moving least‐squares (MLS) approximations for the development of high‐order finite volume discretizations on unstructured grids. The field variables and their successive derivatives can be accurately reconstructed using this mesh‐free technique in a general nodal arrangement. The methodology proposed is used in the construction of two numerical schemes for the shallow water equations on unstructured grids: a centred Lax–Wendroff method with added shock‐capturing dissipation, and a Godunov‐type upwind scheme, with linear and quadratic reconstructions. This class of mesh‐free techniques provides a robust and general approximation framework which represents an interesting alternative to the existing procedures, allowing, in addition, an accurate computation of the viscous fluxes. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
This work concerns the development of a numerical method based on the stream function formulation of the Navier–Stokes equations to simulate two‐dimensional—plane or axisymmetric—viscous flows. The main features of the proposed method are: the use of the high order finite‐difference compact method for the discretization of the stream function equation, the implicit pseudo‐transient Newton–Krylov‐multigrid matrix free method for the stationary stream function equation and the fourth order Runge–Kutta method for the integration of non‐stationary flows. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
A numerical method based on a hybrid meshfree‐Cartesian grid is developed for solving three‐dimensional fluid–solid interaction (FSI) problems involving solid bodies undergoing large motion. The body is discretized and enveloped by a cloud of meshfree nodes. The motion of the body is tracked by convecting the meshfree nodes against a background of Cartesian grid points. Spatial discretization of second‐order accuracy is accomplished by the combination of a generalized finite difference (GFD) method and conventional finite difference (FD) method, which are applied to the meshfree and Cartesian nodes, respectively. Error minimization in GFD is carried out by singular value decomposition. The discretized equations are integrated in time via a second‐order fractional step projection method. A time‐implicit iterative procedure is employed to compute the new/evolving position of the immersed bodies together with the dynamically coupled solution of the flow field. The present method is applied on problems of free falling spheres and tori in quiescent flow and freely rotating spheres in simple shear flow. Good agreement with published results shows the ability of the present hybrid meshfree‐Cartesian grid scheme to achieve good accuracy. An application of the method to the self‐induced propulsion of a deforming fish‐like swimmer further demonstrates the capability and potential of the present approach for solving complex FSI problems in 3D. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
A new finite difference method based on Cartesian meshes is proposed for solving the fluid–structure interaction between a fluid flow modeled by the Stokes equations and a porous media modeled by the Darcy's law. The idea is to introduce several augmented variables along the interface between the fluid flow and the porous media so that the problem can be decoupled as several Poisson equations. The augmented variables should be chosen so that the Beavers–Joseph–Saffman and other interface conditions are satisfied. In the discretization, the augmented variables have co‐dimension one compared with that of the primitive variables and are solved through the Schur complement system. A non‐trivial analytic solution with a circular interface is constructed to check second‐order convergency of the proposed method. Numerical examples with various interfaces and parameters are also presented. Some simulations show interesting behaviors of the fluid–structure interaction between the fluid flow and the porous media. The computational framework can be applied to other multi‐phase and multi‐physics problems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
A new conceptual framework solving numerically the time‐dependent Maxwell–Lorentz equations on a non‐rectangular quadrilateral mesh in two space dimensions is presented. Beyond a short review of the applied particle treatment based on the particle‐in‐cell method, a finite‐volume scheme for the numerical approximation of the Maxwell equations is introduced using non‐rectangular quadrilateral grid arrangements. The coupling of a high‐resolution FV Maxwell solver with the PIC method is a new approach in the context of self‐consistent charged particle simulation in electromagnetic fields. Furthermore, first simulation results of the time‐dependent behaviour of an externally applied‐B ion diode developed at the Forschungszentrum in Karlsruhe are presented. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

13.
A finite difference solution for a system of non‐linear integro–differential equations modelling the steady‐state combined radiative–conductive heat transfer is proposed. A new backward–forward finite difference scheme is formulated for the Radiative Transfer Equation. The non‐linear heat conduction equation is solved using the Kirchhoff transformation associated with a centred finite difference scheme. The coupled system of equations is solved using a fixed‐point method, which relates to the temperature field. An application on a real insulator composed of silica fibres is illustrated. The results show that the method is very efficient. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
An adaptive mesh refinement (AMR) technique is proposed for level set simulations of incompressible multiphase flows. The present AMR technique is implemented for two‐dimensional/three‐dimensional unstructured meshes and extended to multi‐level refinement. Smooth variation of the element size is guaranteed near the interface region with the use of multi‐level refinement. A Courant–Friedrich–Lewy condition for zone adaption frequency is newly introduced to obtain a mass‐conservative solution of incompressible multiphase flows. Finite elements around the interface are dynamically refined using the classical element subdivision method. Accordingly, finite element method is employed to solve the problems governed by the incompressible Navier–Stokes equations, using the level set method for dynamically updated meshes. The accuracy of the adaptive solutions is found to be comparable with that of non‐adaptive solutions only if a similar mesh resolution near the interface is provided. Because of the substantial reduction in the total number of nodes, the adaptive simulations with two‐level refinement used to solve the incompressible Navier–Stokes equations with a free surface are about four times faster than the non‐adaptive ones. Further, the overhead of the present AMR procedure is found to be very small, as compared with the total CPU time for an adaptive simulation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
This paper describes a new computational model developed to solve two‐dimensional incompressible viscous flow problems in external flow fields. The model based on the Navier–Stokes equations in primitive variables is able to solve the infinite boundary value problems by extracting the boundary effects on a specified finite computational domain, using the pressure projection method. The external flow field is simulated using the boundary element method by solving a pressure Poisson equation that assumes the pressure as zero at the infinite boundary. The momentum equation of the flow motion is solved using the three‐step finite element method. The arbitrary Lagrangian–Eulerian method is incorporated into the model, to solve the moving boundary problems. The present model is applied to simulate various external flow problems like flow across circular cylinder, acceleration and deceleration of the circular cylinder moving in a still fluid and vibration of the circular cylinder induced by the vortex shedding. The simulation results are found to be very reasonable and satisfactory. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

16.
A two‐level domain decomposition method is introduced for general shape optimization problems constrained by the incompressible Navier–Stokes equations. The optimization problem is first discretized with a finite element method on an unstructured moving mesh that is implicitly defined without assuming that the computational domain is known and then solved by some one‐shot Lagrange–Newton–Krylov–Schwarz algorithms. In this approach, the shape of the domain, its corresponding finite element mesh, the flow fields and their corresponding Lagrange multipliers are all obtained computationally in a single solve of a nonlinear system of equations. Highly scalable parallel algorithms are absolutely necessary to solve such an expensive system. The one‐level domain decomposition method works reasonably well when the number of processors is not large. Aiming for machines with a large number of processors and robust nonlinear convergence, we introduce a two‐level inexact Newton method with a hybrid two‐level overlapping Schwarz preconditioner. As applications, we consider the shape optimization of a cannula problem and an artery bypass problem in 2D. Numerical experiments show that our algorithm performs well on a supercomputer with over 1000 processors for problems with millions of unknowns. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
The present study aims to accelerate the non‐linear convergence to incompressible Navier–Stokes solution by developing a high‐order Newton linearization method in non‐staggered grids. For the sake of accuracy, the linearized convection–diffusion–reaction finite‐difference equation is solved line‐by‐line using the nodally exact one‐dimensional scheme. The matrix size is reduced and, at the same time, the CPU time is considerably saved owing to the reduction of stencil points. This Newton linearization method is computationally efficient and is demonstrated to outperform the classical Newton method through computational exercises. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
In this study, the obstacle problems, also known as the non-linear free boundary problems, are analyzed by the generalized finite difference method (GFDM) and the fictitious time integration method (FTIM). The GFDM, one of the newly-developed domain-type meshless methods, is adopted in this study for spatial discretization. Using GFDM can avoid the tasks of mesh generation and numerical integration and also retain the high accuracy of numerical results. The obstacle problem is extremely difficult to be solved by any numerical scheme, since two different types of governing equations are imposed on the computational domain and the interfaces between these two regions are unknown. The obstacle problem will be mathematically formulated as the non-linear complementarity problems (NCPs) and then a system of non-linear algebraic equations (NAEs) will be formed by using the GFDM and the Fischer–Burmeister NCP-function. Then, the FTIM, a simple and powerful solver for NAEs, is used solve the system of NAEs. The FTIM is free from calculating the inverse of Jacobian matrix. Three numerical examples are provided to validate the simplicity and accuracy of the proposed meshless numerical scheme for dealing with two-dimensional obstacle problems.  相似文献   

19.
Three‐dimensional higher‐order eXtended finite element method (XFEM)‐computations still pose challenging computational geometry problems especially for moving interfaces. This paper provides a method for the localization of a higher‐order interface finite element (FE) mesh in an underlying three‐dimensional higher‐order FE mesh. Additionally, it demonstrates, how a subtetrahedralization of an intersected element can be obtained, which preserves the possibly curved interface and allows therefore exact numerical integration. The proposed interface algorithm collects initially a set of possibly intersecting elements by comparing their ‘eXtended axis‐aligned bounding boxes’. The intersection method is applied to a highly reduced number of intersection candidates. The resulting linearized interface is used as input for an elementwise constrained Delaunay tetrahedralization, which computes an appropriate subdivision for each intersected element. The curved interface is recovered from the linearized interface in the last step. The output comprises triangular integration cells representing the interface and tetrahedral integration cells for each intersected element. Application of the interface algorithm currently concentrates on fluid–structure interaction problems on low‐order and higher‐order FE meshes, which may be composed of any arbitrary element types such as hexahedra, tetrahedra, wedges, etc. Nevertheless, other XFEM‐problems with explicitly given interfaces or discontinuities may be tackled in addition. Multiple structures and interfaces per intersected element can be handled without any additional difficulties. Several parallelization strategies exist depending on the desired domain decomposition approach. Numerical test cases including various geometrical exceptions demonstrate the accuracy, robustness and efficiency of the interface handling. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
This work introduces a novel, mortar‐based coupling scheme for electrode‐electrolyte interfaces in 3‐dimensional finite element models for lithium‐ion cells and similar electrochemical systems. The coupling scheme incorporates the widely applied Butler‐Volmer charge transfer kinetics, but conceptually also works for other interface equations. Unlike conventional approaches, the coupling scheme allows flexible mesh generation for the electrode and electrolyte phases with nonmatching meshes at electrode‐electrolyte interfaces. As a result, the desired spatial mesh resolution in each phase and the resulting computational effort can be easily controlled, leading to improved efficiency. All governing equations are solved in a monolithic fashion as a holistic, unified system of linear equations for computational robustness and performance reasons. Consistency and optimal convergence behavior of the coupling scheme are demonstrated in elementary numerical tests, and the discharge of two different realistic lithium‐ion cells, each consisting of an anode, a cathode, and an electrolyte, is also simulated. One of the two cells involves about 1.35 million degrees of freedom and very complex microstructural geometries obtained from X‐ray tomography data. For validation purposes, characteristic numerical results from the literature are reproduced, and the coupling scheme is shown to require considerably fewer degrees of freedom than a standard discretization with matching interface meshes to achieve a similar level of accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号