首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of water‐soluble dual light‐ and thermo‐responsive homopolymers bearing azobenzene units and terminal oligo(ethylene glycol) units with well‐defined molecular weight (M n = 0.69 × 104 to 4.60 × 104 g mol?1) were synthesized via reversible addition–fragmentation chain transfer polymerization. All the homopolymers exhibited reversible photoisomerization and their lower critical solution temperatures showed an unusual increase with increasing molecular weight. Interestingly, by increasing the molecular weight, the aggregate morphology of these polymers was found to evolve from a spherical to a cylindrical shape. © 2017 Society of Chemical Industry  相似文献   

2.
Using atom transfer radical polymerization (ATRP), thermo‐responsive regenerated cellulose membranes were synthesized. Regenerated cellulose membranes were firstly modified by reacting the hydroxyl groups on the surface with 2‐bromoisobutyryl bromide, followed by grafting with poly(N‐isopropylacrylamide). The membranes had obvious thermally modulated permeability properties. Analysis was carried out by means of X‐ray photoelectron spectroscopy, attenuated total reflection Fourier transform infrared spectroscopy, scanning electron microscopy and thermogravimetric analysis. The results showed that N‐isopropylacrylamide had been grafted successfully on the surface of the regenerated cellulose membranes. The thermally modulated permeability properties of the grafted membranes were studied using water flux measurements. It was found that the thermally modulated permeability properties of a cellulose surface can be tailored by the use of the ATRP method. Copyright © 2010 Society of Chemical Industry  相似文献   

3.
Novel amphiphilic, thermo‐ and pH‐responsive polyaspartamides showing both double‐responsive (pH and temperature) behavior and a sol‐gel transition were prepared and characterized. The polyaspartamide derivatives were synthesized by the successive aminolysis reactions of polysuccinimide using both hydrophobic N‐alkylamine (laurylamine, octylamine, hexylamine) and hydrophilic N‐isopropylethylenediamine. The composition of each component was analyzed by 1H NMR. At the intermediate composition range, the system showed a lower critical solution temperature behavior in water. The transition temperature (pH dependent) could be modulated by changing the alkyl chain length and graft composition. The temperature dependence of the nanoparticle size distribution of the polyaspartamide derivatives was also examined. The critical micelle concentration of the copolymers in a phosphate‐buffered saline (pH 7.4) solution ranged from 6 to 20 μg/L. In addition, physical gelation, i.e., a sol‐gel transition, was observed in a concentrated solution. These novel double‐responsive and injectable hydrogels have potential biomedical applications such as drug delivery systems and tissue engineering. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
Microgel particles were prepared, made of hydroxypropylcellulose‐graft‐(acrylic acid) (HPC‐g‐AA) and acrylic acid(AA). The particles undergo reversible volume phase transitions in response to both pH and temperature changes while keeping the inherent properties of PAA and HPC‐g‐AA. Dynamic light scattering measurements reveal that the average hydrodynamic radius and hydrodynamic radius distributions of the microgel particles depend on temperature and pH. The microgels exhibit excellent pH sensitivity and a higher swelling ratio at higher pH in aqueous solution. In vitro release study shows that the amount of insulin released from the microgels is less at pH = 1.2 than at pH = 6.8. The results indicate that the resultant microgels seem to be of great potential for intelligent oral drug delivery. Copyright © 2012 Society of Chemical Industry  相似文献   

5.
Most of elastomers for fabrication of comfortable epidermal devices and smart actuators produce responsive signals by the stimuli‐induced deformation. Herein, a dynamic visualization of external stimuli rather than the deformation through synthesis of a self‐healing poly(dimethylsiloxane) (PDMS)‐based elastomer doped with aggregation‐induced emission (AIE) molecules is reported. The self‐healing PDMS‐based elastomer is designed and synthesized through molecule integration of reversible multi‐strength H‐bonds and permanent covalent crosslink sites. The adjustment of the weight ratio of elastic cross‐linker offers tunable mechanical properties of the resultant elastomer. After doping such an elastomer with AIE molecules of 1,1,2,2‐tetrakis(4‐nitrophenyl)ethane, the elastomer composite displays strong on–off fluorescence depending upon mechanical damage and temperatures, which can be used to detect the breaking and self‐healing performances, as well as the temperature change. The strategy described here provides another way to develop smart polymeric elastomers for practical applications.  相似文献   

6.
The review is focused on the formation and the self‐healing properties of polymer and hybrid multilayers formed via the layer‐by‐layer approach. In the first part of the review the recent developments in the construction of polymer multilayers are highlighted. In the second part the design and the self‐healing properties of inorganic ? polymer hybrid multilayers are described. It is shown that self‐healing multilayers have a broad spectrum of applications including corrosion protection, as elements of antifouling and antimicrobial coatings and bio‐inspired superhydrophobic interfaces. It is demonstrated that dynamic functional interfaces have a complex hierarchical organization of non‐covalently bonded polymers and colloidal particles. Mechanisms of self‐healing behavior of the multilayers and the role of water and external stimuli (pH, ionic strength and temperature, light) in swelling of multilayers and rearrangement of polymer segments are discussed. Future trends, perspectives and research strategies for the design of ‘smart’ self‐assemblies with self‐healing properties are proposed. © 2015 Society of Chemical Industry  相似文献   

7.
Current academic and industrial research sustains large efforts to synthesize and develop environmentally responsive smart materials. The temperature‐responsive materials with a trigger temperature in the physiological range attract much attention due to their potential biomedical applications. We describe their chemistry and the way to synthesize them, focusing on applications for smart clothing fabrication. Copyright © 2007 Society of Chemical Industry  相似文献   

8.
BACKGROUND: A considerable amount of research has been focused on smart hydrogels that can respond to external environmental stimuli, especially temperature and pH. In this study, fast responsive thermo‐ and pH‐sensitive poly[(N,N‐diethylacrylamide)‐co‐(acrylic acid)] hydrogels were prepared by free radical copolymerization in aqueous solution using poly(ethylene glycol) (PEG) as a pore‐forming agent. RESULTS: Swelling studies showed that the hydrogels produced had both temperature and pH sensitivity. The deswelling kinetics at high temperature demonstrated that the shrinking rates were influenced by the addition of the pore‐forming agent and the amount of acrylic acid in the initial total monomers. The deswelling curves in low‐buffer solutions had two stages. Pulsatile swelling studies indicated that the PEG‐modified hydrogels were superior to the normal ones. These different swelling properties were further confirmed by the results of scanning electron microscopy. CONCLUSION: Such fast responsive thermo‐ and pH‐sensitive hydrogels are expected to be useful in biomedical fields for stimuli‐responsive drug delivery systems. Copyright © 2008 Society of Chemical Industry  相似文献   

9.
In this work, the mechanical and the self‐healing behaviors of an ethylene‐co‐methacrylic acid ionomer were investigated in different testing conditions. The self‐healing capability was explored by ballistic impact tests at low‐velocity, midvelocity, and hypervelocity bullet speed; different experimental conditions such as sample thickness and bullet diameter were examined; in all impact tests, spherical projectiles were used. These experiments, in particular those at low and midspeed, allowed to define a critical ratio between sample thickness and bullet diameter below which full repair was not observed. After ballistic damage, the healing efficiency was evaluated by applying a pressure gradient through tested samples. Subsequently, morphology analysis of the affected areas was made observing all tested samples by scanning electron microscope. This analysis revealed different characteristic features of the damaged zones affected at different projectile speed. Stress–strain curves in uniaxial tension performed at different temperatures and strain rates revealed yield strength and postyield behavior significantly affected by these two parameters. A rise of temperature during high strain rate tests in the viscoplastic deformation region was also detected. This behavior has a strong influence on the self‐repairing mechanism exhibited by the studied material during high‐energy impact tests. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1949–1958, 2013  相似文献   

10.
This study is an attempt to investigate the effect of a representative pro‐oxidant (manganese stearate) on the degradation behavior of 70 ± 5 μ thickness films of LDPE, LLDPE and their blends. Films were prepared by film blowing technique in the presence of varying quantities of manganese stearate (0.5–1% w/w) and subsequently subjected to accelerated degradative tests: xenon arc exposure and air‐oven exposure (at 70°C). The physico–chemical changes induced as a result of aging were followed by monitoring the mechanical properties (Tensile strength and Elongation at break), carbonyl index (CI), morphology (SEM), melt flow index (MFI), oxygen content (Elemental analysis), and DSC crystallinity. The results indicate that the degradative effect of pro‐oxidant is more pronounced in LDPE than LLDPE and blends, due to the presence of larger number of weak branches in the former. The degradation was also found to be proportional to the concentration of the pro‐oxidant. Flynn‐Wall‐Ozawa iso‐conversion technique was used to determine the kinetic parameters of degradation, which were used to determine the effect of the pro‐oxidant on the theoretical lifetime of the polymer. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

11.
BACKGROUND: Thermo‐responsive copolymers with racemate or single enantiomer groups are attracting increasing attention due to their fascinating functional properties and potential applications. However, there is a lack of systematic information about the lower critical solution temperature (LCST) of poly(N‐isopropylacrylamide)‐based thermo‐responsive chiral recognition systems. In this study, a series of thermo‐responsive chiral recognition copolymers, poly[(N‐isopropylacrylamide)‐co‐(N‐(S)‐sec‐butylacrylamide)] (PN‐S‐B) and poly[(N‐isopropylacrylamide)‐co‐(N‐(R,S)‐sec‐butylacrylamide)] (PN‐R,S‐B), with different molar compositions, were prepared. The effects of heating and cooling processes, optical activity and amount of chiral recognition groups in the copolymers on the LCSTs of the prepared copolymers were systematically studied. RESULTS: LCST hysteresis phenomena are found in the phase transition processes of PN‐S‐B and PN‐R,S‐B copolymers in a heating and cooling cycle. The LCSTs of PN‐S‐B and PN‐R,S‐B during the heating process are higher than those during the cooling process. With similar molar ratios of N‐isopropylacrylamide groups in the copolymers, the LCST of the copolymer containing a single enantiomer (PN‐S‐B) is lower than that of the copolymer containing racemate (PN‐R,S‐B) due to the steric structural difference. The LCSTs of PN‐R,S‐B copolymers are in inverse proportion to the molar contents of the hydrophobic R,S‐B moieties in these copolymers. CONCLUSION: The results provide valuable guidance for designing and fabricating thermo‐responsive chiral recognition systems with desired LCSTs. Copyright © 2008 Society of Chemical Industry  相似文献   

12.
The multifunctional double network (DN) soft hydrogels reported here are highly swellable and stretchable pH‐responsive smart hydrogel materials with sufficient strength and self‐healing properties. Such multifunctional hydrogels are achieved using double crosslinking structures with multiple physical and chemical crosslinks. They consist of a copolymer network of acrylamide (AM) and sodium acrylate (Na‐AA) and other reversible network of poly(vinyl alcohol)–borax complex. They were characterized by Fourier transform IR analysis and studied for their hydrogen bonding and ionic interaction. The degree of equilibrium swelling was observed to be as high as 5959% (at pH 7.0) for a hydrogel with AM/Na‐AA = 25/75 wt% in the network (GS‐6 sample). The highest degree of swelling was observed to be 6494% at pH 8.5. The maximum tensile strength was measured to be 1670, 580 and 130 kPa for a DN hydrogel (GS‐2 sample: AM/Na‐AA =75/25 wt% with 20, 40 and 60 wt% water content, respectively). The self‐healing efficiency was estimated to be 69% for such a hydrogel. These multifunctional DN hydrogels with amalgamation of many functional properties are unique in hydrogel materials and such materials may find applications in sensors, actuators, smart windows and biomedical applications. © 2018 Society of Chemical Industry  相似文献   

13.
Collagen‐based hydrogels have gained significant popularity in biomedical applications; however, traditional collagen hydrogels are easily disabled for lack of self‐healing properties due to their non‐reversible bonds. Here, a self‐healing collagen‐based hydrogel has been developed based on dynamic network chemistry, consisting of dynamic imine linkages between collagen and dialdehyde guar gum, as well as diol‐borate ester bonds between guar gum and borax. In addition, macromolecular interactions amongst macromolecules are involved. The above‐mentioned interactions were validated by Fourier transform infrared spectroscopy, sodium dodecyl sulfate polyacrylamide gel electrophoresis and DSC. The as‐prepared collagen‐based hydrogels showed good injectability and rapid self‐healing capacity (within 3 min) as reflected from injection tests, optical microscope observations, rheological measurements, as well as self‐healing studies. In addition, the collagen‐based hydrogels showed accelerated wound‐healing properties. This study offers a facile strategy to endow self‐healing ability on collagen‐based hydrogels without any external stimulus, which show great application potential as wound dressings. © 2020 Society of Chemical Industry  相似文献   

14.
Self‐healing hydrogels are attractive for a variety of applications including wound dressings and coatings. This paper describes the facile preparation and characterization of an autonomous self‐healing hydrogel system comprising surfactant‐free hydrophobic associations. The hydrogel comprised a copolymer of benzyl methacrylate (B), octadecyl methacrylate (O), and methacrylic acid (MA). The hydrogels were prepared via a controlled dehydration procedure to achieve the formation of strong intermolecular hydrophobic associations of the octadecyl groups above a critical polymer concentration. Fractured hydrogels healed within 30 min without any external intervention. Increasing hydrogel polymer content from 31 wt % to 39 wt % resulted in a threefold increase in the shear modulus and 50% reduction of the relaxation time. Addition of 4 mM NaCl to a hydrogel of 31 wt % polymer content resulted in 2.5 times longer relaxation time and 24% decrease in shear modulus. The hydrogels swelled up water by up to four times its weight, which corroborates the robustness of the hydrophobic association crosslinks. The bulk properties of the hydrogels are discussed in terms of the hydrophobic associations of the O‐groups and the electrostatic interaction of the MA‐groups in the polymer chains. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44800.  相似文献   

15.
Hydrogels that can undergo gelation upon injection in vivo are promising systems for the site‐specific delivery of drugs. In particular, some thermo‐responsive gels require no chemical additives but simply gel in response to a change from a lower temperature to physiological temperature (37 °C). The gelation mechanism does not involve covalent bonds, and it is possible that incorporation of drugs into the hydrogel could disrupt gelation. We investigated the incorporation of drugs into thermo‐responsive hydrogels based on poly(?‐caprolactone‐co‐lactide)‐block‐poly(ethylene glycol)‐block‐poly(?‐caprolactone‐co‐lactide) (PCLA–PEG–PCLA). Significant differences in properties and in the response to incorporation of the anti‐inflammatory drug celecoxib (CXB) were observed as the PEG block length was varied from 1500 to 3000 g mol?1. Linear viscoelastic moduli of a PCLA–PEG–PCLA hydrogel containing a 2000 g mol?1 PEG block were least affected by the incorporation of CXB and this gel also exhibited the slowest release of CXB, so the incorporation of phenylbutazone, methotrexate, ibuprofen, diclofenac and etodolac was also investigated for this hydrogel. Different drugs resulted in varying degrees of syneresis of the hydrogels, suggesting that they interact with the polymer networks in different ways. In addition, the drugs had varying effects on the viscoelastic and compressive moduli of the gels. The results showed that the effects of drug loading on the properties of thermo‐responsive hydrogels can be substantial and depend on the drug. For applications such as intra‐articular drug delivery, in which the mechanical properties of the hydrogel are important, these effects should thus be studied on a case‐by‐case basis. © 2019 Society of Chemical Industry  相似文献   

16.
In this work, the oxidation‐induced crack healing of Al2O3 containing 20 vol.% of Ti2AlC MAX phase inclusions as healing particles was studied. The oxidation kinetics of the Ti2AlC particles having an average diameter of about 10 μm was studied via thermogravimetry and/or differential thermal analysis. Surface cracks of about 80 μm long and 0.5 μm wide were introduced into the composite by Vickers indentation. After annealing in air at high temperatures, the cracks were filled with stable oxides of Ti and Al as a result of the decomposition of the Ti2AlC particles. Crack healing was studied at 800, 900, and 1000°C for 0.25, 1, 4, and 16 hours, and the strength recovery was measured by 4‐point bending. Upon indentation, the bending strength of the samples dropped by about 50% from 402 ± 35 to 229 ± 14 MPa. This bending strength increased to about 90% of the undamaged material after annealing at 1000°C for just 15 minutes, while full strength was recovered after annealing for 1 hour. As the healing temperature was reduced to 900 and 800°C, the time required for full‐strength recovery increased to 4 and 16 hours, respectively. The initial bending strength and the fracture toughness of the composite material were found to be about 19% lower and 20% higher than monolithic alumina, respectively, making this material an attractive substitute for monolithic alumina used in high‐temperature applications.  相似文献   

17.
Self‐healing of polymers and polymer composites initially represented a process capable of autonomic restoration of mechanical strength upon cracking of the materials, but it is moving into the area of restoration of functionality. This mini‐review is focused on recent efforts to develop functional polymers with built‐in stimuli‐responsive ability to heal for recovery of their specific physical or chemical properties. Molecular design and synthesis, compounding and assembly of organic and inorganic species, inherent reversibility, etc., are summarized. It is hoped that much more interest will be aroused in this emerging and promising frontier topic. © 2014 Society of Chemical Industry  相似文献   

18.
The reaction of toluene diisocyanate with 2,2,3,3‐tetrafluoro‐1‐propanol (fluoro compound) or 3‐glycidoxypropyl trimethoxysilane(siloxane compound) and other additives to form the structure of the fluoro‐based or siloxane‐based polyurethane (PU) ionomer has been proven by infrared spectra. Experimental results indicated that the amount of water vapor permeability of the film made by fluoro‐based or siloxane‐based PU ionomer appeared to gradually increase with increasing concentration of the siloxane compound or fluoro compound, as a result of the formation of more porosities. Our experimental results also showed that the water vapor absorption was seen to be larger for the film made by siloxane‐based PU ionomer film than for the film made by fluoro‐based PU ionomer film, as a result of increased hydrophilic groups attached to the backbone of the PU ionomer molecule. For the film prepared by siloxane‐based PU ionomer, both tensile strength and elongation appeared to increase with an increase in the concentration of siloxane compound. This may be the result of the intermolecular interaction between siloxane‐based PU ionomer molecules themselves, thus enhancing the crosslinking capability of the ionomer molecules. On the other hand, both tensile strength and elongation for the film prepared by fluoro‐based PU ionomer decreased with increasing concentration of the fluoro compound, as a result of intramolecular interaction greatly reducing the crosslinking capability of the ionomer molecules. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3767–3773, 2006  相似文献   

19.
Developing wound dressings that have strong adhesion strength without causing any conglutination to the wound site is still challenging. Herein, is proposed that zwitterionic shape memory polymers can be applied as promising candidates for wound dressing. Sulfobetaine methacrylate (SBMA) is copolymerized with 2,3‐dihydroxypropyl methacrylate (DHMA) in the presence of boric acid as a cross‐linking agent. The prepared material exhibits multi‐stimuli responsive shape memory behaviors: it can rapidly return to its initial shape upon heating to 90 °C, and a gradual recovery is also observed by absorbing moisture in humid environments. The shape memory effect can be well adjusted via incorporation of sodium chloride to induce the dissociation of electrostatic interactions between PSBMA chains, leading to reduced transition temperature and faster shape recovery rate. Moreover, the dynamic nature of boron ester bonds and electrostatic interaction endows the material with effective and rapid self‐healing ability. It is also demonstrated that the deployment process of the dressing that a sample with an initially circular shape can perfectly fit and tightly bind to the wound site after moisture‐induced shape recovery. The proposed zwitterionic polymer can possibly extend the application scope of shape memory polymers and pave a new way for the design of wound dressings.  相似文献   

20.
Epoxy was sequestered within a poly(vinyl alcohol) (PVA) shell using a coaxial electrospinning process resulting in fibers suitable for use in self‐healing materials. Electrospinning equipment was designed and built including extensive development of the coaxial spinneret and optimization of the electrical field. Other parameters that were studied and controlled included the viscosity of the shell material and the interfacial tension between the shell and core material. The interfacial tension between the PVA solution and the epoxy was controlled by adding ethanol to the water solvent. A concentration of 8.5 wt% PVA in a combined ethanol and water solution (water:EtOH = 1:0.15) yielded a PVA solution that had interfacial tension and viscosity characteristics that were effective for coaxial electrospinning. The resulting coaxially electrospun fibers assumed a beaded fiber morphology. © 2012 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号