首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acrylonitrile‐butadiene‐styrene (ABS)/clay nanocomposites have been prepared using two types of ABS with different AN contents and a chemically modified clay, Cloisite 20A. The composites were prepared by melt mixing in a twin‐screw extruder. Their morphological properties were characterized by XRD and TEM. The thermal stability of the polymer nanocomposites was studied using TGA and flammability tests. The results were analyzed in terms of the effect of the clay content and the type of ABS used on the clay dispersion and the thermal stability of the nanocomposites. Experimental results confirmed that better dispersion and intercalation and/or exfoliation can be obtained when using an ABS with a higher AN content. The study using TGA and flammability tests showed that the nanodispersed layers of silicate enhanced the thermal stability of the ABS matrix, and that an ABS with higher AN content was more effective in providing fire retardancy. This suggests that when using higher AN contents, more polar groups are present within the polymer matrix, allowing a more homogeneous dispersion and intercalation of the chain polymers into the organomodified montmorillonite clay (MMT), and even some exfoliation of the nanoclay.

  相似文献   


2.
This study explored the combined influence of shear flow and nucleating agents on isotactic polypropylene (iPP) crystallisation. The study showed that oriented α‐iPP crystals were not necessary to form β‐iPP crystals, contrary to the accepted view that the surface of oriented α‐iPP crystals provides nucleation sites for an α‐iPP to β‐iPP growth transition. Instead it was proposed that flow‐induced mesomorphic point‐like nuclei preferentially nucleates β‐iPP. The combined effect of shear flow and nucleant was found to promote γ‐iPP crystals. The surprising γ‐iPP nucleation effect was explained by the high density of flow‐induced and heterogeneous nuclei present at the start of crystallisation.

  相似文献   


3.
Novel nanocomposites prepared by melt mixing of MWCNTs in a hot‐melt adhesive PCL‐based polyurethane are investigated. The nucleating effect of MWCNTs and the confinement they cause to polymer chains are considered. The broadening of the glass transition is indicative of a growth of the immobilized amorphous fraction adhered to MWCNTs. In the molten state the formation of a combined polymer/MWCNT network is observed. Practical requisites of hot melt adhesives, such as adequate melting temperature, crystallization degree, and viscosity are preserved when MWCNTs are added. Improvement of strength at room temperature and welding rate during cooling, are observed.

  相似文献   


4.
The fabrication of nanocomposites by organic modification of clay during mixing into NR is reported. NR/OMMT nanocomposites show more intercalation and exfoliation at higher modifier content, increasing the tensile modulus primarily by improved filler reinforcement. Comparison with nominally identical pre‐modified OMMT shows similar microstructures and physical properties. No effect of mixing duration is observed, indicating that modification is rapid. Unlike montmorillonite, unmodified sepiolite disperses well in NR, so organo‐modification improves compatibility but does not affect the nanocomposite microstructure. This means that organo‐sepiolite offers relatively small improvements over sepiolite as a filler for NR.

  相似文献   


5.
Strong honeycomb like nanocomposite sponges were fabricated from starch and PVA by using repeated cycles of freezing and thawing and reinforcing with cellulose whiskers. Their structure and properties were investigated with WAXD, FT‐IR, SEM, DMTA, rheological measurements, and LSCM. The results revealed that the repeated freezing/thawing cycles induced a physically crosslinked chain packing between starch and PVA, as well as a phase separation caused by the crystalline ice and syneresis. Thus, larger pores and tougher walls emerged in the sponges, leading to a high swelling degree. The sponges reinforced with cellulose whiskers exhibited improved dimensional stability and enhanced strength. These nanocomposite sponges are promising for wound dressing and tissue engineering applications.

  相似文献   


6.
An in situ lubrication dispersion method is developed to achieve electrical conductivity in PP containing a small amount of MWCNTs. Good dispersion of the MWCNTs in PP is observed even after a short mixing time because the interactions between the entangled nanotubes are reduced. By in situ lubrication dispersion, the electrical percolation threshold of the PP nanocomposite can be as low as 0.5–0.7 wt% MWCNT. Rheological data also support percolation at 0.5 wt% MWCNT. With 0.5 wt% MWCNT, the slope of G′ at low frequency approaches unity and shows non‐terminal behavior. The proposed dispersion method enhances the wetting of MWCNTs and improves MWCNT dispersion compared to both direct mixing of MWCNT powder with a polymer melt and conventional master batch dilution.

  相似文献   


7.
PET/PEN blends were prepared over the full composition range via a melt mixing process under various processing conditions. This resulted in transesterification reactions and formation of copolymer structures with various average sequence block lengths and degree of randomness (RD) determined by 1H NMR. It was seen that with an increase in time and temperature of mixing copolymer content (TEN%) and RD increased, whereas the , values were decreased. The differences in the extent of transreactions arising from different processing histories showed their systematic influence on rheological characteristics. Moreover due to progress of transreactions during the rheological measurements, convergence was seen in all the rheological characteristics at terminal zones in the high frequency regions. Similar convergence in the copolymer structural parameters was also obtained by NMR analysis. An increase in TEN% led to a systematic increase in viscosity of the blends. A decrease in the , values results in an increase in elasticity and relaxation time due to improvement of blend interface with increase in extent of copolymer formation.

  相似文献   


8.
This study aims to examine the morphological development in fluid assisted injection molded high density polyethylene (HDPE)/polycarbonate (PC) blends. Samples for microscopic observation were prepared by an 80‐ton injection‐molding machine equipped with a tube cavity and with both gas and water injection units. It was observed that the shape and size of the dispersed phase depended on the position both across the part thickness and along the flow direction. Water molded parts with a smaller PC particle distribution than gas. Additionally, high fluid pressures were found to mold parts with a smaller PC particle distribution. For both gas and water assisted injection molding, small and large particles coexisted in the skin and subskin layers, indicating that both coalescence and breakup of the dispersed phase occurred in that layer.

  相似文献   


9.
In the present work, the functionalisation of oxidised SWCNTs and MWCNTs is studied. The functionalised fillers are characterised by Raman spectroscopy and TGA. The functionalised fillers are dispersed in a PBT‐PTMO thermoplastic elastomer matrix via in situ polymerisation. The functionalisation causes a fine filler dispersion right at beginning of nanocomposite manufacturing. The fillers act as nucleating agents for crystallisation and evidences for a grafting from PBT at the surface of the functionalised nanotubes are found. An outstanding reinforcement effect by the functionalised CNTs is confirmed by tensile tests.

  相似文献   


10.
This work reports a facile route to synthesize homochiral and stereocomplexed polylactide by reactive extrusion. The effect of the polymerization catalyst (combination of tin(II)octanoate and triphenylphosphine) before and after its deactivation is discussed. Poly‐L ‐lactide (PLLA) exhibits homochiral crystallinity and diblock poly‐L ,D ‐lactide (PDLLA) exhibits stereocomplex crystallinity. The presence of residual monomer leads to a plasticizing effect, reducing glass transition temperature (Tg). Changes of the tacticity (L ,D ‐tacticity) of the stereocomplex are due to the transesterification reactions between L and D units. Deactivation of the catalyst reduces transesterification reactions and preserves the polylactide stereocomplex upon heating.

  相似文献   


11.
Unfilled and MWCNT‐filled PA fibers are prepared and the effect of the extensional flow on their mechanical performance and morphological variations is investigated. Morphological analyses using SEM, TEM, and SAXS suggest a stronger orientation of the MWCNTs along the fiber direction with increasing extensional flow. A particular MWCNT bundle formation in the PA drawn nanocomposite fibers is observed for the first time, and a pull‐out of the central nanotube in some bundles is noted. The maintenance of the “shish‐kebab” structure upon extensional flow is responsible for the mechanical improvements and dimensional stability in MWCNT‐filled PA fibers.

  相似文献   


12.
A simple, easily accessible solvent‐free method for the dispersion of MWCNTs into PET is proposed, based on the preparation of a microparticulate polymer/nanotube masterbatch via cryogenic impact‐milling and its subsequent melt blending with the bulk polymer. Thermal and mechanical properties of nanocomposites prepared using this method were evaluated as a function of nanotube concentration. Thermal stability was improved, and superior crystallization behavior of PET in the nanocomposites was observed. Significant improvements of around 25% in tensile strength and tensile modulus of the nanocomposites was achieved using this strategy, with only 0.25 wt.‐% MWCNT, compared to previous literature data where 1 wt.‐% MWCNT was employed.

  相似文献   


13.
The synthesis of silver nanoparticles attached on the surface of a hollow cornet‐like polymer matrix which served as a reductant and host matrix is described. This hybrid organic/inorganic macromolecular matrix is exhibiting anion‐exchange properties, porous structure and hollow morphologies, and absorptions in the visible light region. Due to the anion‐exchange property and the 3D orientation of the macromolecular chains the material is defining a new functional organic/inorganic hybrid. For the synthesis of nanoparticles, no other reducing agents were used and silver nanoparticles with a mean diameter of less than 20 nm were attached on the surface of the polymer, thus inheriting the composite with high antibacterial activity tested in bacterial strains and yeasts.

  相似文献   


14.
Dynamic crack propagation routes in composites were investigated using numerical methods. The interfacial strength was characterized by means of the interfacial nodal constrained failure. Five different micro‐damage modes around a broken fiber and the corresponding stress/strain curves were obtained with the interfacial strength increasing. It was proved that the shear stress concentration region appears to be different as the interface varying from weak to strong and that the recovery of fiber load‐supporting with a strong interface is better than that with a weak interface. Experimental work has been done and the available results agree well with corresponding simulation results.

  相似文献   


15.
pCBT/MWCNT nanocomposites were prepared by in situ polymerization of CBT after solid‐phase HEBM of the polymerization catalyst containing CBT with MWCNT. The crystallinity and crystallization behavior of the pCBT nanocomposites were studied by WAXS and DSC. The MWCNTs did not affect the crystallinity of the isothermally produced pCBT significantly, but acted as nucleation agents during the crystallization of pCBT from its melt. pCBT/MWCNT nanocomposites were subjected to DMTA, static flexure, and dynamic Charpy impact tests. The flexural modulus, strength, and impact strength from these tests all went through a maximum as a function of the MWCNT content. Optimum properties were found in the MWCNT range of 0.25–0.5 wt.‐%.

  相似文献   


16.
A recently developed electrohydrodynamic printing method is described that can be used to create ordered structures and complex patterns using coarse processing needles and two polymeric materials. The results highlight the method's potential for direct 3D writing of biomedical polymers and composites for a variety of biomedical applications.

  相似文献   


17.
Dynamic and transient shear start‐up flow experiments along with TEM, WAXS, and SEM analyses are performed on PP/PET blends and nanocomposites. The TEM results along with a theoretical analysis based on a thermodynamic model reveal that the clay particles are mainly localized in the PET phase. The localization of nanoclay in PET as the matrix phase leads to a refinement of morphology. The localization of clay is also studied by analyzing changes in complex viscosity and storage modulus in oscillation mode as well as the changes in power law index obtained from steady‐state and transient shear start‐up flow experiments. The changes in the rheological behavior of the blends are attributed to formation of clay network‐like structures.

  相似文献   


18.
This paper investigates thermally activated healing in an epoxy amine network using six thermoplastic modifiers; ethylene vinyl acetate (EVA), poly (ethylene‐co‐glycidyl)‐methacrylate (PEGMA), poly(vinyl‐butyral) (PVB), styrene‐ethylene‐butadiene copolymer (SEBS), acrylonitrile‐butadiene‐styrene (ABS) and polyethylene‐co‐methacrylic acid (EMAA). They all exhibit healing but varied in efficiency, repeatability and mechanism. EMAA, PEGMA and EVA display superior healing or load recovery compared with ABS, SEBS and PVB with increasing healing events. For EMAA and PEGMA this is attributed to a pressure delivery mechanism, while for EVA, it is attributed to increased viscous flow and a highly elastomeric response to damage. Adhesive binding of the fracture surfaces is also critical in restoring load.

  相似文献   


19.
Novel fluoroalkyl end‐capped oligomer/hydroxyapatite nanocomposites have been easily prepared by the reaction of disodium hydrogenphosphate and calcium chloride in the presence of self‐assembled molecular aggregates formed by fluoroalkyl end‐capped oligomers in aqueous media. The fluorinated hydroxyapatite nanocomposites thus obtained were found to exhibit a good dispersibility in a variety of media, and were applied to the surface modification of glass.

  相似文献   


20.
A new, nickel‐coated graphite resistance‐change‐based method for gel‐point determination for epoxy‐based thermoset resins is presented and compared with DSC and rheological methods. Gelation times determined by this new method are in very good agreement with conventional techniques; this new method is potentially simpler and less time consuming than existing ones.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号