首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
BACKGROUND: Ethylene oligomerization is the major industrial process to produce linear α‐olefins. Recently much work has been devoted to late transition metal catalysts used in this process, especially those with 2,6‐bis(imino)pyridyl dihalide ligands. Considering that most work has focused on simple modification to the substituents in imino‐aryl rings based on the symmetric bis(imino)pyridyl framework, here we expand this work to the asymmetric mono(imino)pyridyl ligands. RESULTS: The preparation, structure and ethylene polymerization/oligomerization behavior of series of mono(imino) pyridyl–MCl2 and bis(imino)pyridyl–MXn complexes are presented. The systematic studies were focused on the relationship between the catalytic behavior of these complexes for ethylene polymerization/oligomerization and reaction conditions, ligand structures, metal centers and counter‐anions. The influence of the coordination environment on catalyst behavior is also discussed. CONCLUSION: For mono(imino)pyridyl–Co(II) and ? Ni(II) catalysts bearing the Cl? counter‐anion, good activities ranging from 0.513 × 105 to 1.58 × 105 g polyethylene (mol metal)?1 h?1 atm?1 are afforded, and the most active catalysts are those with methyl in both ortho‐ and para‐positions of the imine N‐aryl ring. For bis(imino)pyridyl–Co(II) and ? Ni(II) catalysts bearing the SO42? and NO3? counter‐anions, the low activities for ethylene oligomerization are in sharp contrast to those of their chloride analogues. Copyright © 2009 Society of Chemical Industry  相似文献   

2.
Results of a comparative study of ethylene polymerization activity and the structure of polyethylene (PE) produced over homogeneous catalysts based on bis(imino)pyridine complexes with close ligand frameworks and different transition metal centers (Fe(II), Co(II), Cr(III) and V(III)) are reported. The effects of the activator nature and polymerization conditions on the activity of these complexes and the resulting PE structure (molecular weight, molecular weight distribution, content of methyl and vinyl groups) have been studied. The experimental data obtained under comparable conditions demonstrate a pronounced effect of transition metal center on the catalytic properties of bis(imino)pyridine complexes (polymerization activity, copolymerization reactivity, thermal stability, PE structure, composition of optimal activator, formation of single-site or multiple-site catalytic system).  相似文献   

3.
To develop heterogeneous catalysts for ethylene polymerization, bis(imino)pyridineiron(III), α-diiminenickel(II), and iminopyridinenickel(II) complexes were immobilized in the clay mineral (montmorillonite, fluorotetrasilicic mica or saponite) interlayers by a one-pot preparation method. In this method, the Fe3 +- and Ni2 +-exchanged clay minerals as an acid catalyst promoted the ligand formation from a ketone derivative and an aniline derivative, and then the formed ligand simultaneously coordinated to the metal ions located in the clay mineral interlayer. The obtained heterogeneous catalysts showed 100–3,000 g-PE g-cat 1 h 1 as activities for the ethylene polymerization/oligomerization.  相似文献   

4.
The metal‐ion complexation behavior and catalytic activity of 4 mol % N,N′‐methylene bisacrylamide crosslinked poly(acrylic acid) were investigated. The polymeric ligand was prepared by solution polymerization. The metal‐ion complexation was studied with Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), and Zn(II) ions. The metal uptake followed the order: Cu(II) > Cr(III) > Mn(II) > Co(II) > Fe(III) > Zn(II) > Ni(II). The polymeric ligand and the metal complexes were characterized by various spectral methods. The catalytic activity of the metal complexes were investigated toward the hydrolysis of p‐nitrophenyl acetate (NPA). The Co(II) complexes exhibited high catalytic activity. The kinetics of catalysis was first order. The hydrolysis was controlled by pH, time, amount of catalyst, and temperature. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 272–279, 2004  相似文献   

5.
A set of six new polystyrene anchored metal complexes have been synthesized by the reaction of the metal salt with the polystyrene anchored Schiff base of vanillin. These complexes were characterized by elemental analyses, Fourier transform infrared spectroscopy, diffuse reflectance studies, thermal studies, and magnetic susceptibility measurements. The elemental analyses suggest a metal : ligand ratio of 1 : 2. The ligand is unidentate and coordinates through the azomethine nitrogen. The Mn(II), Fe(III), Co(II), Ni(II), and Cu(II) complexes are all paramagnetic while Zn(II) is diamagnetic. The Cu(II) complex is assigned a square planar structure, while Zn(II) is assigned a tetrahedral structure and Mn(II), Fe(III), Co(II), and Ni(II) are all assigned octahedral geometry. The thermal analyses were done on the ligand and its complexes to reveal their stability. Further, the application of the Schiff base as a chelating resin in ion removal studies was investigated. The polystyrene anchored Schiff base gave 96% efficiency in the removal of Ni(II) from a 20‐ppm solution in 15 min, without any interference from ions such as Mn(II), Co(II), Fe(III), Cu(II), Zn(II), U(VI), Na+, K+, NH4+, Ca2+, Cl?, Br?, NO3?, NO2?,and CH3CO2?. The major advantage is that the removal is achieved without altering the pH. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1536–1539, 2005  相似文献   

6.
A series of bis(imino)pyridyl Co(II) and Fe(II) complexes containing allyloxy group on the pyridine ring were prepared. These metal complexes were heterogenized covalently immobilizing on modified SBA-15 mesoporous material in the presence of Karstedt catalyst. This immobilization technique was demonstrated to be an ideal one since the resulting supported catalysts resembled closely their homogeneous counterparts, mirroring the feature of active sites.  相似文献   

7.
A series of iron and cobalt complexes ligated with different bis(imino)pyridyl ligands were synthesized and used in ethylene polymerization. The reaction temperature and Al/Fe ratio had a great influence on the activities and properties of the polymer in the iron system when methylaluminoxane was used as the cocatalyst. Bimodal polyethylene, unimodal polyethylene, and oligomers were achieved with ethylene polymerization according to the structures of the ligands and polymerization conditions. The cobalt systems showed low activities when bis(imino)pyridyl was used as the ligand in comparison with the iron system catalysts. Ethylene oligomerization was conducted, and the main products were 1‐butylene and 1‐hexene. A fast deactivation process was observed from the curve of the polymerization kinetics. The polymerization mechanism was examined. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
This article reviews recent studies on the polymerization of 1,6-heptadienes and 2-aryl- and 2-alkoxy-1-methylenecyclopropanes catalyzed by Co, Fe, and Pd complexes. Co and Fe complexes with bis(imino)pyridine ligands catalyze the cyclopolymerization of 1,6-heptadiene in the presence of MMAO to produce the polymer, which contains five-membered rings in the monomer units. The polymers with cis- or trans-five-membered rings are obtained selectively, depending on the complex used in the polymerization. The catalyst, prepared from the Co complex having a bis(imino)pyridine ligand and MMAO, promotes the polymerization of 2-aryl-1-methylenecyclopropanes without ring-opening. The reaction under ethylene atmosphere produces alternating copolymer of the two monomers to yield the polymers composed of the C4 repeating unit with a 1,1-cyclopropanediyl group. The alternating copolymer of ethylene and 7-methylenebicyclo[4.1.0]heptane undergoes thermal rearrangement to afford the polymer with CC double bond in main chain. A radical pathway is proposed. Dinuclear π-allylpalladium complexes with bridging Cl ligands initiate living polymerization of 2-alkoxy-1-methylenecyclopropanes, which accompanies ring-opening of the monomer, to afford the polymers composed of the C3 repeating units having alkoxy and vinylidene groups. A cyclic dinuclear π-allylpalladium complex reacts with 2-alkoxy-1-methylenecyclopropane in the presence of pyridine to produce the living polymer with macrocyclic structures. Block copolymerization of the two monomers that contain OR or O(CH2CH2O)R as the substituents on the three-membered ring, results in the polymers with hydrophobic and hydrophilic segments.  相似文献   

9.
Fe(III), Cr(III), Fe(II), Co(II) and Ni(II) chloride complexes supported by 2,6-bis[1-(iminophenyl)ethyl]pyridine have been synthesized and characterized along with single crystal X-ray diffraction. These complexes, in combination with MAO, have been examined in butadiene polymerization. The catalytic activity and regioselectivity are strongly controlled by metal center and cocatalyst (MAO/Co ratio dependent in the case of Co(II) complex). The activity decreases in the order of Fe(III) > Co(II) > Cr(III) ≈ Ni (II) complexes, in consistent with the space around the metal center. Polybutadiene with different microstructure content, from high trans-1,4 units (88-95% for iron(III) and Cr(III)), medium trans-1,4 and cis-1,4 units (55% and 35%, respectively, for iron(II)) to high cis-1,4 units 79% for Co(II) and 97% for Ni(II) can be easily achieved by varying of the metal center. In addition, mechanism speculation is also presented to elucidate the dependence of catalytic behaviors on metal and cocatalyst.  相似文献   

10.
A facile and user friendly technique to immobilize late transition metal complexes on nonporous silica has been developed. Among the supported diimine Ni(II) and iminopyridyl Fe(II) catalysts, former showed high activities exceeding 105 g-PE mol-metal?1 h?1 bar?1 combined with ethylaluminum sesquichloride. The obtained polymer morphology was tunable from spherical to fibrous shape.  相似文献   

11.
A novel azomethine oligomer of 2,3-bis[(2-hydroxyphenyl)methylene]diaminopyridine (HPMDAP) was first synthesized by oxidative polycondensation reaction using air and NaOCl as oxidative agents. Optimum reaction conditions for the oxidative polycondensation and the main parameters of the process were established. At optimum reaction conditions, the yield of the product was found to be 69%. Oligomeric complexes of 2,3-bis[(2-hydroxyphenyl)methylene]diaminopyridine with Cd(II), Co(II), Cu(II), Ni(II), Fe(II), Pb(II), Cr(III) and Zn(II) were successfully prepared. Structures of monomer, oligomer and some oligomer metal complexes obtained were confirmed by FT-IR, UV–vis, 1H- and 13C-NMR and elemental analysis. Characterization was carried out by TG-DTA, size exclusion chromatography (SEC), magnetic moment and solubility tests. The 1H- and 13C-NMR data showed that polymerization proceed by C–C coupling of ortho and para positions according to –OH group of HPMDAP. Elemental analysis of chelates suggests that the metal ligand ratio is about 1:2. Molecular weight distribution values of the products were determined by size exclusion chromatography (SEC). According to TG analyses, the carbonaceous residues of HPMDAP and OHPMDAP were found to be 34.94 and 29.36% at 1000 °C, respectively. Thermal analyses of Cd, Co, Cu, Ni, Fe, Pb, Cr and Zn oligomer–metal complexes were also investigated under N2 atmosphere between 15 and 1000 °C. Electrical conductivities of OHPMDAP and its metal complexes were also measured with four probe technique.  相似文献   

12.
Poly[5,5??-methylene-bis(2-hydroxybenzaldehyde)1,2-phenylenediimine] resin was prepared and characterized by employing elemental, thermal analysis, FTIR, and UV?Cvisible spectroscopy. The metal uptake behavior of synthesized polymer towards Cu(II), Co(II), Ni(II), Fe(III) and Cd(II) ions was investigated and optimized with respect to pH, shaking speed, and equilibration time. The sorption data of all these metal ions followed Langmuir, Freundlich, and Dubinin?CRadushkevich isotherms. The Freundlich parameters were computed 1/n?=?0.31?±?0.02, 0.3091?±?0.02, 0.3201?±?0.05, 0.368?±?0.04, and 0.23?±?0.01, A?=?3.4?±?0.03, 4.31?±?0.02, 4.683?±?0.01, 5.43?±?0.03, and 2.8?±?0.05?mmol?g?1 for Cu(II), Co(II), Ni(II), Fe(III), and Cd(II) ions, respectively. The variation of sorption with temperature gives thermodynamic quantity (??H) in the range of 36.72?C53.21?kJ/mol. Using kinetic equations (Morris?CWeber and Lagergren equations), values of intraparticle transport and the first-order rate constant was computed for all the five metals ions. The sorption procedure is utilized to preconcentrate these ions prior to their determination by atomic absorption spectrometer. It was found that the adsorption capacity values for metal-ion intake followed the following order: Cd(II)?>?Co(II)?>?Fe(III)?>?Ni(II)?>?Cu(II).  相似文献   

13.
Catalase‐like activity of the metal complexes of various crosslinked polystyrene‐supported Schiff bases were carried out and correlated with the nature and degree of crosslinking in the polymer support. Polystyrenes with 2–20 mol % ethyleneglycol dimethacrylate (EGDMA), 1,4‐butanediol dimethacrylate (BDDMA) and 1,6‐hexanediol diacrylate (HDODA) were used as polymer supports. functions of diethylenetriamine and salicylaldehyde were incorporated to the chloromethylpolystyrene by polymer analogous reactions and complexed with Fe(II), Fe(III), Co(II), Ni(II), and Cu(II) ions. The metal uptake decreased in the order: Cu(II) > Co(II) > Ni(II) > Fe(III) > Fe(II), and extent of metal uptake by the various crosslinked system varied with the nature and degree of the crosslinking agent. The polymeric ligands and the metal complexes were characterized by various analytical techniques. The catalytic activities of these metal complexes were investigated towards the decomposition reaction of hydrogen peroxide. Generally among the various metal complexes, the catalytic activities decreased in the order: Co(II) > Cu(II) > Ni(II) > Fe(III) ? Fe(II). With increasing rigidity of the crosslinking agent their catalytic activity also decreased. Of the various crosslinked systems, the catalytic activity decreased in the order: HDODA‐ > BDDMA‐ > EGDMA‐crosslinked system. Also, the catalytic activity is higher for low crosslinked systems and decreased further with increasing degree of crosslinking. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1271–1278, 2004  相似文献   

14.
Three novel Schiff base ligands containing the azo group, 2-((E)-(4-((E)-phenyldiazenyl)phenylimino)methyl)phenol, 3-((E)-(4-((E)-phenyldiazenyl)phenylimino)methyl)benzene-1,2-diol and 4-((E)-(4-((E)-phenyldiazenyl)phenylimino)methyl)benzene-1,2,3-triol, were synthesized from the reaction of p-aminoazobenzene with salicylaldehyde, 2,4-dihydroxybenzaldehyde and 2,3,4-trihydroxybenzaldehyde, respectively. The mononuclear Co(II) and Cu(II) complexes of the Schiff base ligands were prepared and characterized using elemental analyses, IR, UV–visible spectroscopy, magnetic susceptibility and conductance measurements; 1H NMR and mass spectra of the ligands were also recorded. The Co(II) and Cu(II) metal complexes are formed by the coordination of the N and O atoms of the ligands. The electrochemical properties of the metal complexes were investigated at 100 mV s?1 scan rate in DMSO; the oxidative C–C coupling properties of the Co(II) and Cu(II) complexes were investigated on the sterically hindered 2,6-di-tert-butylphenol (DTBP). In addition, the Schiff base ligands and their complexes were evaluated for both their in vitro antibacterial activity using the disc diffusion method.  相似文献   

15.
A water-soluble polymer, poly(2-acrylamido glycolic acid) was obtained by radical polymerization and characterized by FT-IR, 1H NMR, and 13C NMR spectroscopy. The metal ion retention properties were investigated through the liquid-phase polymer based retention (LPR) technique at different pHs and filtration factor Z. The affinity of the ligand groups for the metal ions depends strongly on the pH. At lower pH, the retention is lower than 50%, which increased as the pH increased. At pH 5, the polymer showed a high affinity and selectivity for Pb(II), and at pH 7 the P(AGA) formed stable complexes with Cu(II), Co(II), Ni(II), Cd(II), and Pb(II). Of the three potential ligand groups, amide, hydroxyl, and carboxylate groups, the carboxylate groups form the more stable complexes with the metal ions.  相似文献   

16.
17.
A series of different steric hindrance nickel(II) complexes 1 – 6 bearing 2,6‐bis(imino)pyridine ligands have been synthesized and characterized. The molecular structures of the complexes 3 – 5 were determined by X‐ray diffraction analysis. The coordination geometry around the nickel center of the complexes is either square pyramid for complexes 3 and 4 or trigonal bipyramid for complex 5 . All of the nickel complexes exhibit high catalytic activity for norbornene polymerization in the presence of MAO, although low activity for ethylene oligomerization and polymerization. The effects of the Al/Ni ratio, halogen, monomer concentration, temperature, and reaction time on activity of catalyst for norbornene polymerization and polymer microstructure were investigated. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

18.
New Mn(II), Fe(II), Co(II), Ni(II), Cu(II), and Zn(II) coordination polymers of Schiff base ligand derived from terephthalaldehyde and S-benzyldithiocarbazate have been synthesized in DMF media. The coordination polymers have been characterized by their elemental analysis, magnetic susceptibility, and by electronic and infrared spectral measurements. The thermal stability of each polymer was found out by thermogravimetric analysis. The thermal stability of coordination polymers obtained from thermograms has the following order: $ {\rm Zn} \simeq {\rm Fe} > {\rm Co} > {\rm Ni} > {\rm Min} \simeq {\rm Cu}$ Mn(II), Fe(II), Co(II), and Ni(II) coordination polymers are of a six-coordinated octahedral structure while Cu(II) and Zn(II) coordination polymers are found to be four-coordinated square planar and tetrahedral structure, respectively. The ligand-field and nephelauxetic parameters have been determined from the spectra, using ligand-field theory of spin-allowed transitions which are found consistent with six-coordinate structure for Mn(II), Fe(II), Co(II), and Ni(II) coordination polymers. Elemental analyses indicates a ligand: metal ratio of 1 : 1 in all the coordination polymers and the association of water molecules with central metal atom in case of Mn(II), Fe(II), Co(II), and Ni(II) coordination polymers.  相似文献   

19.
Metal ion desorbed crosslinked N,N‐bis(2‐aminoethyl)polyacrylamides showed enhanced specificity for the desorbed metal ion, and these polymers selectively rebind the desorbed metal ion from a mixture of metal ions. For this, polyacrylamide with 8 mol % divinylbenzene (DVB) and N,N′‐methylene‐bisacrylamide (NNMBA) crosslinking were prepared by solution polymerization. Diethylenetriamino functions were incorporated into the polymers by polymer analogous reactions. The complexing ability of the amino polymers were investigated toward various transition metal ions like Co(II), Ni(II), Cu(II), and Zn(II). Polymeric ligand and metal complexes were characterized by various spectral methods. The removal of the metal ion from the polymer matrix resulted in a memory for the desorbed metal ion. On rebinding, these polymers specifically rebind the desorbed metal ion and from a mixture of metal ions, it showed selectivity to the desorbed metal ion. Thus, the Cu(II) desorbed polymer specifically and selectively rebind Cu(II) ion from a mixture of Cu(II) and other metal ion. This selectivity is higher in the rigid DVB‐crosslinked system, resulting from the high rigidity of the crosslinked matrix compared to the semirigid NNMBA‐crosslinked system. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
The synthesis and characterization of poly(ethylenediaminetetraacetic acid‐co‐lactose) of high molar mass (132 kg mol?1) is described. The polycondensate with pendant carboxylic groups was shown to be hydrolytically and microbiologically degradable by using conventional microbiological methods. The metal complexing properties of the polyester were studied for Cr(III), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Sr(II), Cd(II), Pb(II), and Al(III) ions in aqueous solution using the liquid‐phase polymer‐based retention (LPR) method. In addition, the complexing capacity of the Cu(II)‐saturated copolymer was determined by TGA to be 182 mg g?1 polymer. According to the retention profiles determined as a function of filtration factor by using LPR in conjunction with inductively coupled plasma spectrometry, Cr(III) and Fe(III) showed a strong interaction with this polymer under these conditions, indicated by retention values of 100% at pH 5. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2932–2939, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号