首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using the experience gained from the development of polymer–polymer nanofibrillar composites (NFCs), an attempt was undertaken to manufacture PET single polymer nanofibrillar composites. For this purpose polypropylene (PP) was removed by selective extraction from a knitted textile manufactured with PP/PET (80:20 by wt) blend. The remaining PET nanofibrillar textile was then sandwiched between lower‐melting PET films and compression molded at 120 °C. The obtained PET single polymer NFCs comprised PET nanofibrils as reinforcement and showed an improvement in the tensile strength and modulus of 37–100 and 40–140%, respectively (depending on the annealing temperature after compression molding and the test direction) compared to those of the starting isotropic matrix film.

  相似文献   


2.
In situ PET microfibrils are created by drawing melt‐blended PP and PET. The drawn blend is used to prepare polymer/polymer MFCs, and isolated PET microfibrils are used for the manufacturing of MF‐SPCs. Samples are prepared with different fibril orientations to determine the effect of orientation on the mechanical properties of the two types of composites. The resulting composites show improvements in stiffness of 77% for uniaxial MFCs, and 125% for uniaxial MF‐SPCs, with the highest recorded modulus of 8.57 GPa for a uniaxial MF‐SPC sample. SEM observations confirm that the fibrillar structure and excellent alignment is maintained. The changes in the reinforcement effect with orientation are very similar to those predicted by the rule of mixtures for the crossply.

  相似文献   


3.
A new class of polymer materials is reviewed, the SPCs, in which the matrix and the reinforcement share the same chemical composition. In addition to their milder environmental impact as compared to traditional polymer composites, they show superior mechanical performance mainly due to the improved adhesion between matrix and reinforcement. Another advantage of SPCs is the missing dispersion step in their production, thus contrasting the common polymer nanocomposites. Definition, manufacturing, classification, and the application opportunities of SPCs are described. Special attention is paid on the very new members of the SPC family, the micro‐ and nanofibrillar SPCs, including the techniques for preparation of their starting neat micro‐ and nanofibrils using bulk polymers.

  相似文献   


4.
A simple, easily accessible solvent‐free method for the dispersion of MWCNTs into PET is proposed, based on the preparation of a microparticulate polymer/nanotube masterbatch via cryogenic impact‐milling and its subsequent melt blending with the bulk polymer. Thermal and mechanical properties of nanocomposites prepared using this method were evaluated as a function of nanotube concentration. Thermal stability was improved, and superior crystallization behavior of PET in the nanocomposites was observed. Significant improvements of around 25% in tensile strength and tensile modulus of the nanocomposites was achieved using this strategy, with only 0.25 wt.‐% MWCNT, compared to previous literature data where 1 wt.‐% MWCNT was employed.

  相似文献   


5.
A novel method of making water‐based amorphous carbon nanotubes (ACNTs) for advanced polymer nanocomposites is presented. In this approach, sodium dodecyl sulfate (SDS) is introduced onto the amorphous carbon nanotubes to improve the solubility in water and the dispersion in polyvinyl alcohol [PVA] matrix. As a result, the addition of 0.6 wt % ACNTs in the polymer resulted in the significant improvement (167.5 and 175.8%) in the tensile strength and modulus of the polymer, respectively. The improved mechanical property could be ascribed to the load transfer to the nanotubes in the composites. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

6.
Unsaturated fatty acid (FA)–modified nanocellulose (m‐NC) shows potential application in improving mechanical properties of unsaturated polyester/m‐NC nanocomposites (UPe/m‐NC). A polyester matrix is obtained by polycondensation of maleic anhydride and products of poly(ethylene terephthalate) depolymerization with propylene glycol. Two methods of NC modification are performed: direct esterification with oleic acid, linseed, or sunflower oil FAs, and esterification/amidation with maleic acid/ethylene diamine (MA/EDA) bridging group followed by amidation with methyl ester of FAs. Increases of stress at break in the ranges from 148.8% to 181.4% and from 155.8% to193.0% for UPe/m‐NC composites loaded with 1 wt% of NC modified directly or via MA/EDA cross‐linker, respectively, are obtained. Results of the modeling of tensile modulus, by using the Cox–Krenchel model, show good agreement with experimentally obtained data. The effect of FAs' cross‐linking capabilities on the dynamic‐mechanical and thermal properties of the UPe/m‐NC is studied. Cross‐linking density, modulus, and Tg of the nanocomposite show appropriate relation with the unsaturation extent/structure of NC modification.  相似文献   

7.
关瑜  李玲 《塑料助剂》2014,(6):20-24
人工神经网络(ANN)的基本结构是根据大脑的结构来建立的,是原始的人工神经元的简单的聚集,它可以用来模拟各种复杂的科学工程问题。ANN在材料学研究方面得到了广泛应用,主要用于金属材料性能方面的预测。近年来,其也逐渐被用于高分子复合材料的研究,主要对人工神经网络近些年在高分子复合材料性能的预测方面做了总结,其中包括对高分子复合材料的疲劳寿命、摩擦性能、复合加载情况和动态力学性能等的模拟预测。  相似文献   

8.
Fly ash (FA) based polymer composites are assuming increasing importance because of its potentiality, fine particle size and plenty availability of FA. FA is mainly a mixture of inorganic metal oxides such as SiO2, Al2O3, Fe2O3, CaO, MgO, Na2O, TiO2, and so forth. This article highlights the results of the various modifications onto the HDPE‐FA/nano structured FA (NFA) composites. When FA and NFA are melt blended with HDPE it gives rise to improved flexural properties only. Further modifications, that is, Maleic anhydride (MA) grafting of the matrix, electron beam irradiation of the composite and irradiation of the FA/NFA studied separately to find their impact on the detail properties of the composite. Of the three modifications implemented the electron beam irradiation of HDPE‐FA/NFA composite yielded excellent physico‐mechanical, thermal and dynamic mechanical properties. Fracture surface analysis of the HDPE, unmodified and modified FA/NFA composites studied employing SEM correlated well with the physico‐mechanical properties. The results prove that FA is valuable reinforcing filler for HDPE and its size reduction to nano level is a more effective criterion for its future use. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 4558–4567, 2013  相似文献   

9.
Novel phosphorus‐containing copolyester nanocomposites were synthesized by in situ polymerization with 2‐carboxyethyl(phenylphosphinic) acid (CEPPA) and nano‐ZnCO3. The flame retardancy and static and dynamic mechanical properties of poly(ethylene terephthalate) (PET)/nano‐ZnCO3 composites and phosphorus‐containing copolyester/nano‐ZnCO3 composites were evaluated with limiting oxygen index measurements, vertical burning testing (UL‐94), a universal tensile machine, and a dynamic mechanical analysis thermal analyzer. The phosphorus‐containing copolyester nanocomposites had higher limiting oxygen indices (ca. 32%) and a V0 rating according to the UL‐94 test; this indicated that nano‐ZnCO3 and CEPPA greatly improved the flame retardancy of PET. The static mechanical test results showed that the breaking strength, modulus, and yield stress of the composites tended to increase with increasing nano‐ZnCO3 content; when 3 wt % nano‐ZnCO3 was added to PET and the phosphorus‐containing copolyester, the breaking strength of the composites was higher than that of pure PET. Dynamic mechanical analysis indicated that the dynamic storage modulus and loss modulus of the PET composites increased markedly in comparison with those of pure PET. However, the glass‐transition temperatures associated with the peaks of the storage modulus, mechanical loss factor, and loss modulus significantly decreased with the addition of ZnCO3 and CEPPA. The morphologies of the composites were also investigated with scanning electron microscopy, which revealed that nano‐ZnCO3 was dispersed homogeneously in the PET and copolyester matrix without the formation of large aggregates. In addition, the interfacial adhesion of nano‐ZnCO3 and the matrix was perfect, and this might have significantly affected the mechanical properties of the composites. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
A composite material consisting of hydroxide‐modified hemp fibres and euphorbia resin was produced. The composites were tested in tension, short‐beam interlaminar shear stress and in impact. There was an increase in the tensile strength and modulus for resins with high‐hydroxyl‐group based composites. Similar results were obtained for interlaminar shear stress while low‐hydroxyl group euphorbia resin based composites exhibited high impact strength. The euphorbia resin with high hydroxyl content yielded composites with high stiffness. The use of euphorbia‐based resins in composite manufacture increases the value of the euphorbia oil as well as creating a new route of composite manufacturing.

  相似文献   


11.
Jihua Gou 《Polymer International》2006,55(11):1283-1288
A new processing method for the fabrication of single‐walled nanotube (SWNT)‐reinforced nanocomposites was developed to achieve uniform dispersion and high composition of the nanotubes in the nanocomposites. In this method, SWNTs were preformed as bucky paper by multi‐step dispersion and micro‐filtration of a suspension of nanotubes. The nanocomposites were then fabricated by infiltration of diluted epoxy resin through the bucky paper and hot pressing. The wetting of the nanocomposites was examined using scanning electron microscopy and atomic force microscopy. The results showed that the epoxy resin completely penetrated the bucky paper through the nanoporous structures. The results of dynamic mechanical analysis of the nanocomposites showed that the storage moduli of the nanocomposites increased by 200–250%. The tan δ curves indicated that the nanotubes had a strong influence on the damping properties of the nanocomposites. This processing technique is an effective method for fabricating nanocomposites with uniform dispersion and high composition of SWNTs. Copyright © 2006 Society of Chemical Industry  相似文献   

12.
In this study, five different flexibilizers were added into a matrix resin to improve the flexibility of electrically conductive adhesives (ECAs). The flexible ECAs were fabricated from the matrix resin and electrically conductive fillers. Their curing was fixed at 150 °C for 30 min. Of the five flexibilizers, 1,3‐propanediol bis(4‐aminobenzoate) (PBA) had the best effect on the electrical, mechanical and thermal properties of the ECAs. During curing, PBA reacted with the functional epoxy in the matrix resin. The soft ether segments in PBA were grafted into the crosslinked epoxy network to form an orderly spaced mesh structure. This led to high‐temperature stability, with the pyrolysis temperature being above 350 °C. Flexible ECAs with a 10% weight ratio of PBA in the matrix resin had the best properties. Their viscosity and bulk resistivity were the lowest. Their flexibility and electrical conductivity were the highest. They also had low storage modulus which could effectively dissipate or reduce the residual shear stress generated by the mismatch of thermal expansion coefficient between chip and substrate. Their impact strength was the lowest, and the toughening effect was so significant that the improvement was about 48% compared to ECAs. © 2013 Society of Chemical Industry  相似文献   

13.
Nanocomposites of exfoliated montmorillonite in polyethylene were obtained using a combination of 1,4‐bis(2,6‐diisopropylphenyl)‐acenaphthenediimine‐dichloro‐nickel(II), montmorillonite, and methylalumoxane (MAO) or trimethylaluminum (TMA) to polymerize ethylene. The properties of the polymers were strongly influenced by the amount of clay they contained. The addition of 2.5% commercial montmorillonite (KSF or Cloisite 15A) enhanced the storage modulus from 5 to 878 MPa. Transmission electron microscopy (TEM) analyses provided evidence of exfoliation of the montmorillonite with the formation of a polyethylene nanocomposite. The enhanced mechanical properties were explained as a consequence of the reinforcement due to the presence of nanoscale layers formed from exfoliation of the clay included in the polyethylene matrix. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

14.
The potential of polymerization in a dispersed system as an attractive technique for polymer/graphene composite synthesis is discussed. This overview is focused on the preparation of graphene/polymer composite materials by two methods: (i) emulsion mixing or blending of polymer and graphene aqueous dispersions, and (ii) in situ polymerization in a dispersed system (emulsion, miniemulsion, microemulsion, and Pickering‐stabilized emulsion). Various methods for the stabilization of graphene nanoplatelets (GNPs) prior to composite preparation are presented, and the established specific interactions between the filler and the matrix are discussed. The determination of the electrical conductivity and the opportunity offered by polymerization in a dispersed system for the formation of a segregated network of graphene filler in the frame of a polymer matrix are presented. The mechanical and thermal properties of the composites are also discussed. A short summary of the open questions regarding the synthesis of water‐borne polymer/graphene composites is presented.

  相似文献   


15.
In this work, an efficient approach to improving the fire retardancy and smoke suppression for intumescent flame‐retardant polypropylene (PP) composites is developed via incorporating functionalized sepiolite (organo‐modified sepiolite [ONSep]). The PP composites with different amounts of intumescent flame retardants and ONSep were prepared by melt compounding. The morphology, thermal behavior, fire retardancy, smoke suppression, and mechanical property of flame‐retardant PP composites were studied. The results indicate an appropriate amount of ONSep in the flame‐retardant PP composites can increase thermal degradation temperature and char formation as well as a reduction of the peak heat release rate and total heat release; moreover, the addition of ONSep significantly decreases the CO production, total smoke production, smoke production rate, and smoke temperature. Simultaneously, the impact strength of intumescent flame‐retardant PP composite is also maintained by introducing an appropriate amount of ONSep as compared with that without ONSep.  相似文献   

16.
Solar light responsive polymer composites which can deform their shape according to the variation in sunlight power density are prepared by incorporating the solar light photothermal filler of Sm0.5Sr0.5CoO3 (SSC) into crosslinked poly[ethylene‐ran‐(vinyl acetate)] (EVA). Dual shape‐memory effect, temperature‐memory effect, and reversible bidirectional shape‐memory effect are all achieved in such EVA‐SSC composites. Dual shape‐memory effect with fixation ratio over 99% and recovery ratio over 95% is presented, while the responsive power density is adjusted from 0.4 to 0.1 w cm?2 by simply decreasing the programming temperature from 140 to 50 °C. Furthermore, during a cyclic variation in power density from 0 to 0.3 w cm?2 and back to 0 w cm?2 in 6 min, the composite specimens show a reversible angle deformation. Finally, a sunlight‐adaptive circuit switch is demonstrated using such composites, automatically turning off the LED lamp and turning on the motor fan according to the sunlight power density.

  相似文献   


17.
采用不同粒径的煤矸石粉填充高密度聚乙烯制备复合材料,研究了球磨时间对煤矸石粉体粒径的影响和粒径对煤矸石粉填充聚合物复合材料的力学性能的影响。结果表明:粒径对复合材料的性能影响明显,SEM照片显示超细煤矸石粉与HDPE相容性好;当粒径由100目提高到6000目,填充量为30%时,复合材料的弯曲模量提高了30.77%,弯曲强度提高了37.9%,拉伸强度也提高了20.12%,达到增强增韧的目的。  相似文献   

18.
Composites with several hierarchical structures were prepared by using different clays, compatibilizers, and PPs. TGA showed that the thermal stability of the composites can be strongly improved, under either inert or thermo‐oxidative conditions, depending on the type of clay and its morphology. Drastic increases in the temperature of the maximum rate of weight loss (ΔTpeak ≈ 170 °C) under thermo‐oxidative conditions were observed depending on the clay dispersion. Furthermore, some composites had a complex multi‐step degradation behavior instead of a single‐step process related with different clay morphologies that can be present simultaneously. Finally, it was concluded that the TGA has a higher sensitivity toward the composite morphology than the mechanical properties.

  相似文献   


19.
A two‐step method is suggested to predict the Young's modulus of polymer nanocomposites assuming the interphase between polymer matrix and nanoparticles. At first, nanoparticles and their surrounding interphase are assumed as effective particles with core–shell structure and their modulus is predicted. At the next step, the effective particles are taken into account as a dispersed phase in polymer matrix and the modulus of composites is calculated. The predictions of the two‐step method are compared with the experimental data in absence and presence of interphase and also, the influences of nanoparticles size as well as interphase thickness and modulus on the Young's modulus of nanocomposites are explored. The predictions of the suggested model show good agreement with the experimental data by proper ranges of interphase properties. Moreover, the interphase thickness and modulus straightly affect the modulus of nanocomposites. Also, smaller nanoparticles create a higher level of modulus for nanocomposites, due to the large surface area at interface and the strong interfacial interaction between polymer matrix and nanoparticles.

  相似文献   


20.
Nanocomposites based on poly(styrene‐b‐ethylene‐ran‐butylene‐b‐styrene) (SEBS) and carbon nanotubes (CNTs) (SEBS/CNT) as well as SEBS grafted with maleic anhydride (SEBS‐MA)/CNT were successfully prepared for electromagnetic shielding applications. Both SEBS/CNT and SEBS‐MA/CNT nanocomposites were prepared by melt compounding and were post‐processed using two different techniques: tape extrusion and compression moulding. The different nanocomposites were characterized by Raman spectroscopy and rheological analysis. Their mechanical properties, electrical properties (10-2–105 Hz) and electromagnetic shielding effectiveness (8.2–12.4 GHz) were also evaluated. The results showed that the CNT loading amount, the presence of MA in the matrix and the shaping technique used strongly influence the final morphologies and properties of the nanocomposites. Whilst the nanocomposite containing 8 wt% CNTs prepared by compression moulding presented the highest electromagnetic shielding effectiveness (with a value of 56.73 dB, which corresponds to an attenuation of 99.9996% of the incident radiation), the nanocomposite containing 5 wt% CNTs prepared by tape extrusion presented the best balance between electromagnetic and mechanical properties and was a good candidate to be used as an efficient flexible electromagnetic interference shielding material. © 2018 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号