首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the first heterologous production of a fungal rutinosidase (6‐O‐α‐L ‐rhamnopyranosyl‐β‐D ‐glucopyranosidase) in Pichia pastoris. The recombinant rutinosidase was purified from the culture medium to apparent homogeneity and biochemically characterized. The enzyme reacts with rutin and cleaves the glycosidic linkage between the disaccharide rutinose and the aglycone. Furthermore, it exhibits high transglycosylation activity, transferring rutinose from rutin as a glycosyl donor onto various alcohols and phenols. The utility of the recombinant rutinosidase was demonstrated by its use for the synthesis of a broad spectrum of rutinosides of primary (saturated and unsaturated), secondary, acyclic and phenolic alcohols as well as for the preparation of free rutinose. Moreover, the α‐L ‐rhamnosidase‐catalyzed synthesis of a chromogenic substrate for a rutinosidase assay – para‐nitrophenyl β‐rutinoside – is described.

  相似文献   


2.
Biodegradable polymers/oligomers were successfully synthesized through a ring‐opening polymerization of ε‐caprolactone and L ,L ‐lactide, initiated by L ‐arginine and L ‐citrulline. The α‐amino acid initiators are natural, operationally simple, inexpensive, environmentally friendly and safe for human health. The polymerizations were performed with no solvents and without introducing any metal impurities. The chemical structures of the polymers obtained were elucidated using 1H NMR, 13C NMR and Fourier transform infrared spectroscopies. In addition, incorporation of α‐amino acid molecules into the polymer chain was confirmed using matrix‐assisted laser desorption ionization time‐of‐flight mass spectrometry. Due to the significant biological activity of L ‐arginine and L ‐citrulline, these α‐amino acid initiators may open a new route for the synthesis of functional polymers especially for pharmaceutical applications. Copyright © 2011 Society of Chemical Industry  相似文献   

3.
A novel enzymatic production system of optically pure β‐hydroxy α‐amino acids was developed. Two enzymes were used for the system: an N‐succinyl L ‐amino acid β‐hydroxylase (SadA) belonging to the iron(II)/α‐ketoglutarate‐dependent dioxygenase superfamily and an N‐succinyl L ‐amino acid desuccinylase (LasA). The genes encoding the two enzymes are part of a gene set responsible for the biosynthesis of peptidyl compounds found in the Burkholderia ambifaria AMMD genome. SadA stereoselectively hydroxylated several N‐succinyl aliphatic L ‐amino acids and produced N‐succinyl β‐hydroxy L ‐amino acids, such as N‐succinyl‐L ‐β‐hydroxyvaline, N‐succinyl‐L ‐threonine, (2S,3R)‐N‐succinyl‐L ‐β‐hydroxyisoleucine, and N‐succinyl‐L ‐threo‐β‐hydroxyleucine. LasA catalyzed the desuccinylation of various N‐succinyl‐L ‐amino acids. Surprisingly, LasA is the first amide bond‐forming enzyme belonging to the amidohydrolase superfamily, and has succinylation activity towards the amino group of L ‐leucine. By combining SadA and LasA in a preparative scale production using N‐succinyl‐L ‐leucine as substrate, 2.3 mmol of L ‐threo‐β‐hydroxyleucine were successfully produced with 93% conversion and over 99% of diastereomeric excess. Consequently, the new production system described in this study has advantages in optical purity and reaction efficiency for application in the mass production of several β‐hydroxy α‐amino acids.

  相似文献   


4.
A series of hydrolysis‐improved thermosensitive polyorganophosphazenes with α‐amino‐ω‐methoxy‐poly(ethylene glycol) (AMPEG) and amino acid esters (AAEs) of ‘N,N‐systems’ was synthesized, and their properties were evaluated in comparison with the thermosensitive polyorganophosphazenes with methoxy‐poly(ethylene glycol) (MPEG) and AAEs of ‘O,N‐systems’, by means of 31P NMR spectroscopy, gel permeation chromatography (GPC) and differential scanning calorimetry (DSC). Most of the present polymers showed a lower critical solution temperature (LCST) in the range 32.0–79.0 °C, depending on the kinds of AAE, length of AMPEG and the mol ratio of the two substituents. These polymers exhibited higher LCSTs and faster degradation rates than the MPEG‐based polymers. The aqueous solution of poly(ethyl glycinate phosphazene)‐graft‐poly(ethylene glycol) [NP(GlyEt)0.94(AMPEG350)1.06]n did not show an LCST, which is presumed to be due to its high hydrophilicity, in contrast to [NP(GlyEt)1.01(MPEG350)0.99]n which showing an LCST at 77.5 °C. On the other hand, the polymers with a high content of AAE or with hydrophobic amino acids such as L ‐aspartic acid and L ‐glutamic acid, have shown a similar LCST to those of the MPEG‐based polymers. The half‐lives (t1/2) for hydrolysis of [NP(AMPEG350)1.06(GlyEt)0.94]n at pH 5, 7.4 and 10 were 9, 16, and 5 days, respectively, which are almost 2.5 to 4 times faster than that of the MPEG‐based polymers. The LCST of the present N,N‐polymers has been shown to be more influenced by salts such as NaCl (‘salting‐out’ effect) and tetrapropylammonium bromide (TPAB) (‘salting‐in’ effect) compared with the ‘O,N‐system’. Such differences of the ‘N,N‐systems’ from the ‘O,N‐systems’ in thermosensitivity, hydrolysis behavior and salt effect seem to be due to the higher hydrophilicity of the amino group in AMPEG. Copyright © 2005 Society of Chemical Industry  相似文献   

5.
We report the enzymatic synthesis of α‐D ‐glucopyranosyl‐(1→4)‐α‐L ‐rhamnopyranoside and α‐D ‐glucopyranosyl‐(1→3)‐α‐L ‐rhamnopyranoside by using a wild‐type transglucosidase in combination with glucoamylase and glucose oxidase. It was shown that Bacillus circulans 251 cyclodextrin glucanotransferase (CGTase, EC 2.1.4.19) can efficiently couple an α‐L ‐rhamnosyl acceptor to a maltodextrin molecule with an α‐(1→4) linkage, albeit in mixture with the α‐(1→3) regioisomer, thus giving two glucosylated acceptors in a single reaction. Optimisation of the CGTase coupling reaction with β‐cyclodextrin as the donor substrate and methyl or allyl α‐L ‐rhamnopyranoside as acceptors resulted in good conversion yields (42–70 %) with adjustable glycosylation regioselectivity. Moreover, the efficient chemical conversion of the products of CGTase‐mediated cis‐glucosylation into protected building blocks (previously used in the synthesis of O‐antigen fragments of several Shigella flexneri serotypes) was substantiated. These novel chemoenzymatic strategies towards useful, convenient intermediates in the synthesis of S. flexneri serotypes 2a and 3a oligosaccharides might find applications in developments towards synthetic carbohydrate‐based vaccine candidates against bacillary dysentery.  相似文献   

6.
The main objective of this work has been to study the effects of copolymer microstructure, both chemical and physical, on the microporosity, in vitro hydrolytic degradability and biocompatibility of electrospun poly(l ‐lactide‐co‐ε‐caprolactone), PLC, copolymer tubes for potential use as absorbable nerve guides. PLC copolymers with L : C compositions of 50 : 50 and 67 : 33 mol % were synthesized via the ring‐opening copolymerization of l ‐lactide (L) and ε‐caprolactone (C) at 120°C for 72 h using stannous octoate (tin(II) 2‐ethylhexanoate) and n‐hexanol as the initiating system. Electrospinning was carried out from solution in a dichloromethane/dimethylformamide (7 : 3 v/v) mixed solvent at room temperature. The in vitro hydrolytic degradation of the electrospun PLC tubes was studied in phosphate buffer saline over a period of 36 weeks. The microporous tubes were found to be gradually degradable by a simple hydrolysis mechanism leading to random chain scission. At the end of the degradation period, the % weight retentions of the PLC 50 : 50 and 67 : 33 tubes were 15.6% and 70.2%, respectively. Pore stability during storage as well as cell attachment and proliferation of mouse fibroblast cells (L929) showed the greater potential of the PLC 67 : 33 tubes for use as temporary scaffolds in reconstructive nerve surgery. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 4357–4366, 2013  相似文献   

7.
Poly(3‐hydroxybutyrate‐co‐3‐hydroxyhexanoate) (PHBHHx) is a thermoplastic biopolyester with a slow crystallization rate. L ‐Phenylalanine (L ‐PH) was used to improve the crystallization rate of PHBHHx. The nonisothermal crystallization kinetics and melting behaviors of PHBHHx and PHBHHx/L ‐PH samples were characterized and compared with differential scanning calorimetry. At cooling rates of 2, 5, 10, and 20°C/min, PHBHHx/L ‐PH could crystallize at higher temperatures than pure PHBHHx. A modified Avrami equation based analysis showed that the addition of L ‐PH shortened the half‐time of crystallization of PHBHHx from 9.6 to 8.0 min and increased the composite rate constant of PHBHHx from 0.201 to 0.283 during the nonisothermal crystallization process at a cooling rate of 10°C/min. For other cooling rates, similar trends of changes were observed. These indicated a faster crystallization rate of PHBHHx in the presence of L ‐PH. PHBHHx/L ‐PH samples showed a higher melting temperature and a sharper melting peak than those of the pure PHBHHx, which suggested that L ‐PH as a nucleation agent improved the perfection of the PHBHHx crystals. Stress–strain measurements showed that both PHBHHx and PHBHHx/L ‐PH maintained their ductile and elastic properties during the 60 days of the aging study. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

8.
Based on the combined use of dimethylformamide (DMF) modulation and neighboring group participation, three iterative one‐pot α‐glycosylation methods, i.e., one‐pot (α,α)‐, one‐pot (β,α)‐, and one‐pot (α,β)‐glycosylations, were developed. These methods are applicable to a range of thioglycosyl donors, confer stereocontrol in α‐/β‐glycosidic bond formation, and thus provide for rapid access to oligosaccharides with various permutations of anomeric configurations. The utility of these one‐pot glycosylation methods is demonstrated in the synthesis of eight non‐natural and natural oligosaccharide targets, including the core 1 serine conjugate, core 8 serine conjugate, the D ‐Gal‐α(1→3)‐D ‐Glc‐α(1→3)‐L ‐Rha trisaccharide unit of the cell wall component in Streptococcus pneumoniae, and the D ‐Glc‐α(1→2)‐D ‐Glc‐α(1→3)‐D ‐Glc trisaccharide terminus of the N‐linked glycan precursor. Confirmation of the anomeric configurations of these oligosaccharides is evidenced by 1H, 13C, 13C‐non‐proton decoupling, and heteronuclear correlation 2D NMR experiments. Global deprotection of selected oligosaccharide targets is illustrated.  相似文献   

9.
A mild and reproducible method has been developed for the entrapment of α‐chymotrypsin into a crosslinked copolymer. A porous copolymer was synthesized at 293 K by solution copolymerization of acrylamide and 2‐hydroxyethyl methacrylate. α‐Chymotrypsin was entrapped during copolymerization at different polymerization stages. The effect of crosslinking on enzyme loading and retention of its activity was examined. Copolymer with 2% crosslinking could entrap >90% of the enzyme. The activity of free and immobilized α‐chymotrypsin was determined by using N‐benzoyl‐L ‐tyrosine ethyl ester and casein as low and high molecular weight substrates respectively. Storage as well as thermal stability of the immobilized enzyme was superior to that of the free one. Effect of calcium and heavy metal ions was studied on immobilized enzyme activity. The immobilized enzyme showed little variation in activity with pH and retained 50% activity after nine cycles. The Michaelis constant Km of the free and immobilized enzyme was estimated to be 2.7 and 4.2 × 10−3 mM, respectively, indicating no conformational changes during entrapment. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2996–3002, 2000  相似文献   

10.
Glycosynthases—retaining glycosidases mutated at their catalytic nucleophile—catalyze the formation of glycosidic bonds from glycosyl fluorides as donor sugars and various glycosides as acceptor sugars. Here the first glycosynthase derived from a family 35 β‐galactosidase is described. The Glu→Gly mutant of BgaC from Bacillus circulans (BgaC‐E233G) catalyzed regioselective galactosylation at the 3‐position of the sugar acceptors with α‐galactosyl fluoride as the donor. Transfer to 4‐nitophenyl α‐D ‐N‐acetyl‐glucosaminide and α‐D ‐N‐acetylgalactosaminide yielded 4‐nitophenyl α‐lacto‐N‐biose and α‐galacto‐N‐biose, respectively, in high yields (up to 98 %). Kinetic analysis revealed that the high affinity of the acceptors contributed mostly to the BgaC‐E233G‐catalyzed transglycosylation. BgaC‐E233G showed no activity with β‐(1,3)‐linked disaccharides as acceptors, thus suggesting that this enzyme can be used in “one‐pot synthesis” of LNB‐ or GNB‐containing glycans.  相似文献   

11.
Novel carbohydrate‐based non‐ionic gemini surfactants consisting of two sugar head groups, two hydrophobic tails having chain lengths of C12, C14, and C16 and a flexible –(CH2)6– spacer were synthesized and investigated for their reverse micellar encapsulation properties. The head groups of the geminis comprise glucose entities (with reducing function blocked in a cyclic acetal group) connected through C‐6 to tertiary amines. These surfactants were explored for reverse micellar encapsulation of d ‐ and l ‐enantiomers of aromatic α‐amino acids viz. histidine (His), phenylalanine (Phe), tyrosine (Tyr) and tryptophan (Trp) in neat n‐hexane. Similar studies were carried out for encapsulation of nucleobases viz. adenine (Ade), guanine (Gua), thymine (Thy), cytosine (Cyt) and Uracil (Ura). Reverse micellar studies revealed that aromatic α‐amino acids were encapsulated in the sequence His>Tyr>Phe>Trp. In most cases, a difference in the degree of encapsulation of d ‐ and l ‐enantiomers of aromatic amino acids in reverse micellar phases of gemini amphiphiles in neat n‐hexane, was revealed. For Tyr, l ‐enantiomer was better encapsulated than its antipode, i.e., d ‐enantiomer but for Trp, d ‐enantiomer was better encapsulated then l ‐enantiomer. In the case of nucleobases, Ura was found selectively encapsulated by reverse micelles formed by these new amphiphiles.  相似文献   

12.
The drug solubility and its release profiles of an anticancer drug from an injectable thermosensitive poly(organophosphazene) hydrogel bearing hydrophobic L ‐isoleucine ethyl ester and hydrophilic α‐amino‐ω‐methoxy‐poly(ethylene glycol) with and without hydrolysis‐sensitive glycyl lactate ethyl ester or functional glycyl glycine have been investigated. 5‐Fluorouracil (5‐FU) was used as a model anticancer drug. The aqueous solutions of 5‐FU incorporated poly(organophosphazenes) were an injectable fluid state at room temperature and formed a transparent gel at body temperature. The poly(organophosphazene) solution could enhance the solubility of 5‐FU and its solubility (34.26 mg/mL) was increased up to 10‐fold compared to that in phosphate‐buffered saline (3.39 mg/mL, pH 7.4, 4°C). The in vitro drug release profiles from poly(organophosphazene) hydrogels were established in phosphate‐buffered saline at pH 7.4 at 37°C and the release of 5‐FU was significantly affected by the diffusion‐controlled stage. The results suggest that the injectable and thermosensitive poly(organophosphazene) hydrogel is a potential carrier for 5‐FU to increase its solubility, control a relatively sustained and localized release at target sites and thus decrease systemic side effects. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

13.
A series of optically active polyamides containing di‐O‐methyl‐L ‐tartaryl moieties in the main chain were synthesized by polycondensation of di‐O‐methyl‐L ‐tartaryl chloride 5 with diamines and characterized by gel permeation chromatography, UV–vis, circular dichroism (CD), IR, and NMR spectroscopies. The polycondensation reaction could be carried out under mild conditions and the reaction time was short (2–3 h). The key monomer 5 prepared from L ‐tartaric acid via esterification, etherification, hydrolysis, and chlorination was easily purified by vacuum sublimation. These polyamides with number average molecular weights ranging from 14,000 to 35,000, displayed large optical activity in dimethyl sulfoxide solution, and their specific optical rotations oscillated between 87.2° and 210.7° depending on the structures of the diamines. The glass transition temperatures of these polyamides were in the range of 106–191°C, and the 10% mass loss occurred at temperature above 300°C. The polyamides derived from aromatic diamines exhibited higher Tg and thermal stability than those derived from aliphatic diamines. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

14.
β‐D ‐Galactosidase (β‐D ‐galactoside galactohydrolase, E.C. 3.2.1.23), most commonly known as lactase, is one of the most important enzymes used in food processing, which catalyses the hydrolysis of lactose to its constituent monosaccharides, glucose and galactose. The enzyme has been isolated and purified from a wide range of microorganisms but most commonly used β‐D ‐galactosidases are derived from yeasts and fungal sources. The major difference between yeast and fungal enzyme is the optimum pH for lactose hydrolysis. The application of β‐D ‐galactosidase for lactose hydrolysis in milk and whey offers nutritional, technological and environmental applications to human life. In this review, the main emphasis has been given to elaborate the various techniques used in recent times for the production, purification, immobilization and applications of β‐D ‐galactosidase. Copyright © 2006 Society of Chemical Industry  相似文献   

15.
A novel straightforward chemoenzymatic procedure for the synthesis of hyacinthacine stereoisomers based on the aldol addition of dihydroxyacetone phosphate (DHAP) to N‐Cbz‐prolinal under catalysis by L ‐rhamnulose 1‐phosphate aldolase from E. coli is presented. The synthesis is complemented by a simple and effective purification protocol consisting of ion‐exchange chromatography on CM‐sepharose. As examples, (−)‐hyacinthacine A2 [the enantiomer of (+)‐hyacinthacine A2], 7‐deoxy‐2‐epialexine (the enantiomer of 3‐epihyacinthacine A2), ent‐7‐deoxyalexine (the enantiomer of 7‐deoxyalexine) and 2‐epihyacinthacine A2 were synthesized by these procedures and characterized for the first time. These new isomers were assayed as inhibitors of glycosidases. As a result, (−)‐hyacinthacine A2 demonstrated to be a good inhibitor of α‐D ‐glucosidase from rice whereas the natural enantiomer, hyacinthacine A2, was not. Moreover, a new family of inhibitors of α‐L ‐rhamnosidase was uncovered.  相似文献   

16.
Whole cells of recombinant Escherichia coli expressing diol synthase from Aspergillus nidulans produced 5,8‐dihydroxy‐9,12,15(Z,Z,Z)‐octadecatrienoic acid from α‐linolenic acid via 8‐hydroperoxy‐9,12,15(Z,Z,Z)‐octadecatrienoic acid as an intermediate. The optimal conditions for 5,8‐dihydroxy‐9,12,15(Z,Z,Z)‐octadecatrienoic acid production using whole recombinant cells were exhibited at pH 7.0, 40 °C, and 250 rpm with 40 g/L cells, 12 g/L, α‐linolenic acid, and 5 % (v/v) dimethyl sulfoxide in a 250‐mL baffled flask containing 50 mL reaction solution. Under these conditions, whole recombinant cells produced 9.1 g/L 5,8‐dihydroxy‐9,12,15(Z,Z,Z)‐octadecatrienoic acid for 100 min, with a conversion yield of 75 % (w/w), a volumetric productivity of 5.5 g/L/h, and specific productivity of 137 mg/g‐cells/h. As an intermediate, 8‐hydroperoxy‐9,12,15(Z,Z,Z)‐octadecatrienoic acid was observed at approximately 1.4 g/L after 100 min. With regard to dihydroxy fatty acid production, this is the highest reported volumetric and specific productivities thus far. This is the first report on the biotechnological production of 5,8‐dihydroxy‐9,12,15(Z,Z,Z)‐octadecatrienoic acid.  相似文献   

17.
Novel polyesters, poly[(ε‐caprolactone)‐co‐(N‐trityl‐L ‐serine‐β‐lactone)]s, were prepared by copolymerizing ε‐caprolactone (CL) with N‐trityl‐L ‐serine‐β‐lactone (TSL) using ZnEt2 as the catalyst. The number‐average molecular weights were determined which ranged from 2.7 × 104 to 4.9 × 104 Da with dispersity values ranging from 1.6 to 1.8. The structures of the copolymers were investigated by means of 1H NMR, 13C NMR and infrared spectroscopies, thermogravimetric analysis and differential scanning calorimetry. The results indicated that CL and TSL monomer units were randomly distributed within the copolymer backbone structures and the ratios of TSL to CL in the copolymers were close to those in the feeds. After removal of the trityl group under mild condition, a new polyester with side amino groups provided by serine units was obtained. L929 cell culturing test indicated good biocompatibility of the polyester with or without protective groups. © 2012 Society of Chemical Industry  相似文献   

18.
The Lewis base‐organocatalyzed asymmetric hydrosilylation of α‐acetamido‐β‐enamino esters was investigated. Among various chiral Lewis base catalysts, a novel catalyst derived from L ‐serine was found to be the most efficient one which can promote the reaction to afford a series of α,β‐diamino acid derivatives with high yields (up to 99%), excellent enantioselectivities (up to 98% ee) and moderate diastereoselectivities (up to 80:20 dr). The absolute configuration of one of the products was determined by the X‐ray crystallographic analysis. In addition, the mechanism and the transition state of the reaction were proposed.  相似文献   

19.
The nonribosomal peptide synthetase PF1022‐synthetase (PFSYN) synthesises the cyclooctadepsipeptide PF1022 from the building blocks D ‐lactate, D ‐phenyllactate and N‐methylleucine. The substrate tolerance of PFSYN for hydroxy acids was probed by in vitro screening of a set of aliphatic and aromatic α‐D ‐hydroxy acids with various structural modifications in the side chain. Thus, new PF1022 derivatives for example, propargyl‐D ‐lactyl‐PF1022 and β‐thienyl‐D ‐lactyl‐PF1022 were generated. The promiscuous behaviour of PFSYN towards aliphatic and aromatic α‐D ‐hydroxy acids is considerably larger than that of related enniatin synthetase (ESYN) and thus gives rise to the enzymatic generation of various new PF1022 derivatives.  相似文献   

20.
Transglycosylations are an important class of enzyme‐catalysed reaction that occur in most living organisms and which are finding increasing application for the synthesis of therapeutic compounds. Compared with other bioconversion processes, however, they generally suffer from low product yields. This is due to the fact that in aqueous environments water is able to undergo a nucleophilic attack of the enzyme–substrate complex, increasing the rate of the competing hydrolysis reaction. The equilibrium yield of such reactions is consequently only around 10% (w/w). Here, the potential of applying in‐situ product removal (ISPR), with the boronate‐containing affinity resin Affi‐Gel® 601, to the α‐glucosidase mediated conversion of phenyl α‐D ‐glucoside to phenyl α‐maltoside has been examined. ISPR can increase the product yield from such kinetically‐controlled reactions by removing the product from the bulk aqueous phase as soon as it is formed. In this way the competing hydrolysis reaction can be prevented and conversions potentially driven to completion. Initial experiments revealed that the optimum pH of the α‐glucosidase reaction in water–acetonitrile mixtures was between 5.5 and 6.5, whereas the optimum pH for binding of the product to the Affi‐Gel® 601 resin was between 8.0 and 8.5. Despite having to compromise on both the optimal conditions for glucosidation and for binding, an increase in product yield of 25% (w/w) was still possible following the implementation of ISPR at pH 8 in an aqueous medium containing 50% (v/v) acetonitrile. Similar results were found with the β‐galactosidase catalysed synthesis of phenyl α‐galactobiose, indicating the potentially generic nature of the ISPR methodology. While these initial results are promising, they indicate the need for more highly selective resins for carbohydrate adsorption (with higher capacities) if further increases in product yield are to be obtained. © 2001 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号