首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
包装废聚乙烯改性沥青路用性能研究   总被引:2,自引:2,他引:0  
方长青  李铁虎 《包装工程》2006,27(6):119-120,152
以回收的包装废弃聚乙烯作为改性剂,对普通道路沥青进行改性,并通过沥青混凝土马歇尔试验实验、车辙实验、抗弯强度试验等,对改性后沥青的路用性能进行了研究,结果表明:包装废聚乙烯改性沥青的稳定性、抗弯强度提高、抗车辙能力增强,沥青路用性能得到明显改善.  相似文献   

2.
运用熔融共混工艺,将废旧胶粉与废旧聚乙烯(PE)以及少量SBS、助剂混炼得到热塑性弹性体沥青改性剂(TPE),对其进行荧光显微(FM)与红外光谱(IR)分析发现,熔融共混过程以物理作用为主;将所得沥青改性剂加入基质沥青进行改性,常规技术指标测试结果表明,沥青的性能均有大幅提高;利用原子力显微镜对基质沥青、TPE改性沥青进行对比分析,TPE合金的加入造成的沥青质聚集是沥青性能得以改善的重要原因。  相似文献   

3.
利用回收的包装废弃聚丙烯、废胶粉代替普通聚合物改性剂,采用复合改性的技术方法,对普通沥青进行改性,提高基质沥青的防水性能。结果表明,改性后沥青的软化点、5℃延度提高,针入度降低,不透水性得到明显提高;不同混合比改性效果显示复合改性沥青综合性能优于单一改性剂直接改性。通过FT-IRF、微观结构分析,对复合改性沥青的高、低温性能,抗变形能力进行了研究,表明改性剂的溶胀及其与沥青形成的空间网络结构、银纹支化、应力剪切作用是产生改性效果的重要原因。  相似文献   

4.
为了提高炭纤维的高温抗氧化性能,提出了一种制备Si—B掺杂沥青基炭纤维的方法。通过聚硼硅氮烷(PSNB)和石油沥青低温共裂解合成了Si—B掺杂沥青,Si—B掺杂沥青经熔融纺丝、原丝预氧化和炭化得到Si—B掺杂沥青基炭纤维。研究了Si—B掺杂沥青及其炭纤维的组成、微观结构和低温抗氧化性能。结果表明,随原料沥青中PSNB掺杂比例的提高,Si—B掺杂炭纤维的拉伸强度和杨氏模量逐渐降低,抗氧化性能逐渐增强。1 400℃炭化得到的Si—B掺杂炭纤维在600℃氧化240 min失重率为25%,650℃氧化140 min失重率为60%。未掺杂炭纤维在相同条件下的氧化失重率分别为46%和99%。Si—B掺杂炭纤维氧化形成的B_2O_3具有较好的流动性,可以在纤维表面形成连续的玻璃膜,有效地抑制基体炭的氧化。  相似文献   

5.
利用原子力显微镜(AFM)、动态剪切流变仪(DSR)和弯曲梁流变仪(BBR)对冻融循环前后的基质沥青和苯乙烯-丁二烯-苯乙烯三嵌段共聚物(SBS)改性沥青进行了微观结构观测和高低温性能测试。试验结果表明:经冻融循环后,沥青"蜂形"结构的数量和尺寸出现不同变化,基质沥青中沥青质含量增加且分散状况变差,SBS改性剂三维网状结构遭到破坏;基质沥青的高温性能有所提升,抗疲劳性能降低,SBS改性沥青的高温性能降低,抗疲劳能力提升;融雪盐浓度增大在一定程度上降低了基质沥青的低温抗裂能力,融雪盐浓度为4wt%时,SBS改性沥青的低温抗裂能力得到提高。SBS改性沥青高低温性能总体上优于基质沥青,建议北方等寒冷地区尽量选用SBS改性沥青作为路面材料。  相似文献   

6.
典型回收聚烯烃改性沥青的性能对比   总被引:1,自引:0,他引:1  
基于典型聚烯烃塑料(高密度聚乙烯(PE-HD)、聚丙烯(PP))回收前后的结构和性能,分析了回收对其改性沥青的常规性能影响变化规律。通过光学显微镜、差示扫描量热法研究了聚烯烃在沥青中的分布状态及热性能变化。结果表明,回收PE-HD(RPE-HD)改性沥青与PE-HD改性沥青相比,高温性能更好,15℃延度更低,25℃针入度更低,回收PP(RPP)则相反。聚烯烃回收前后在基质沥青中相态变化不大,PP的相畴尺寸比PE-HD更大。回收聚烯烃改性沥青与纯聚烯烃相比,熔点降低,熔融热升高。  相似文献   

7.
以回收的包装废聚乙烯(PE)代替普通聚合物改性剂,对石油沥青进行改性,并采用旋转薄膜烘箱加热老化试验(RTFOT)对沥青的老化过程进行研究。结果表明,老化后基质沥青与改性沥青的软化点、135℃黏度升高,而针入度降低,其性能变化趋势基本相似,但随着改性剂量的增加,老化幅度变小。改性后分散于沥青中的包装废PE在老化过程中一方面发生自身降解影响沥青体系的性能,另一方面包装废PE通过吸收基质沥青中轻质油分发生溶胀,从而减少了沥青在热老化过程中游离基的产生,降低了由于轻质组分氧化对基质沥青性能的影响,改善了由于其自身老化对沥青体系的影响,最终导致改性后沥青老化性能改善。  相似文献   

8.
基于SBS改性沥青的三大指标及储存稳定性分析,采用理论与实验相结合的方法,分别从SBS改性机理、SBS型号、基质沥青标号、无机填料、改性沥青加工工艺及老化等方面对SBS改性沥青性能的影响进行深入分析。结果表明,在SBS与基质沥青充分溶胀的前提下,星型SBS改性沥青性能要优于线型SBS改性沥青;基质沥青的标号越高,SBS对基质沥青的改善效果就越明显,并且受到SBS掺量的限制;无机填料可以显著提高SBS改性沥青的硬度和高温稳定性;合理控制SBS改性沥青加工温度和加工时间,均有利于SBS对基质沥青改性作用的发挥;SBS能够显著提高改性沥青的耐老化性能。  相似文献   

9.
多聚磷酸改性沥青研究现状及展望   总被引:1,自引:0,他引:1  
刘祥  张正伟  杨小龙  邹晓龙 《材料导报》2017,31(19):104-111
为明确多聚磷酸(PPA)改性沥青的研究现状,系统阐述了PPA对沥青的改性机理,归纳了PPA改性沥青的制备工艺,重点梳理了PPA对沥青路用性能的影响规律,论述了PPA改性沥青未来研究的发展方向。分析结果表明:PPA改性沥青的作用机理和制备工艺研究不足是制约其在我国推广使用的重要原因;PPA的添加能明显改善沥青的高温性能和抗老化性能,其对沥青水稳定性的影响取决于集料和沥青类型等多方面因素,而PPA改性沥青的低温性能和疲劳特性目前尚无定论,有待进一步研究。  相似文献   

10.
以回收的包装废弃聚合物——西服包装袋(主要成分EVA)代替普通聚合物改性剂,通过添加废胶粉对普通道路沥青进行复合改性。结果表明,改性后,沥青的软化点、5℃延度提高,针入度降低,也就是说,复合改性提高了沥青的综合性能。FT-IR分析表明改性过程属于物理共混。通过改性沥青的微观结构分析,对复合改性沥青的高、低温性能进行了研究,表明复合改性剂形成的空间网络结构及其引发的应力剪切作用是产生改性效果的主要原因。  相似文献   

11.
采用酶解木质素对沥青进行改性,研究了酶解木质素及脲醛改性酶解木质素对改性沥青各项性能的影响。结果表明:添加酶解木质素及脲醛改性酶解木质素后提高了沥青的高温性能,略降低了沥青的低温性能,改善了沥青的抗老化性能;脲醛改性酶解木质素大大提高了沥青与石料之间的黏附性;酶解木质素的最佳掺量为12%。  相似文献   

12.
采用在炭纤维束的内部浸润熔融沥青的传统方法制备得到的炭/炭(C/C)复合材料难以实现细旦化水平,这是因为单束丝中含有数千根丝,经浸渍后沥青附着,从而引起沥青局部渗出,以及因不均匀沥青稳定性而导致微观结构不均匀。本文通过稳定的中间相沥青和分散的短切炭纤维混合、热压和炭化过程制备出细旦化水平的C/C复合材料。探讨了工艺参数对中间相沥青残炭率的影响。通过残炭率/工艺时间、残炭率!(表观密度/实密度)来优化工艺参数。结果表明,通过此法得到了细旦化水平的中间相沥青与炭纤维复合材料。中间相沥青的残炭率随加热升温速率、沥青/炭纤维质量比的增加而降低;随热压压力而增加。在高压力和高质量比下,发生沥青局部渗出。通过调控得到最佳的C/C复合材料制备工艺参数为:热压压力15 MPa,升温速率0. 2℃/min及沥青/炭纤维质量比1∶1。  相似文献   

13.
为研究多聚磷酸(PPA)与苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)复合改性沥青的微观结构和改性机制,对不同掺量(质量分数)的PPA和SBS复合改性沥青样品分别进行了四组分试验、红外光谱试验、荧光显微试验和差示扫描量热试验。结果表明:随着PPA掺量的增加,沥青质含量增多,胶团之间的作用力增强,促使沥青由溶胶结构转变为溶-凝胶结构,提高沥青的黏度;在SBS改性沥青中加入PPA,可增强SBS之间的交联作用及SBS与沥青之间的接枝作用,加强SBS改性沥青的空间网状结构,促使SBS更好地相容于沥青中,改善其高温储存稳定性,并促使SBS分散为细小颗粒,增强溶胀作用,利于SBS发挥改性效果;在低SBS掺量改性沥青中加入PPA,形成的网络结构要优于高SBS掺量单独改性;加入PPA对沥青的玻璃化转变温度没有明显影响,表明PPA对SBS改性沥青的低温性能影响较小。  相似文献   

14.
以石油沥青作为原材料,在普通物理共混改性的基础上,添加交联剂和催化剂,对石油沥青进行改性,并对其改性工艺条件进行了研究。结果表明,交联剂、催化剂能促使聚合物与基质沥青产生化学连接,形成空间网络结构,提高沥青性能。与此同时,交联剂用量、改性温度、改性时间等也与改性沥青性能有关。当DVB/aspha lt=0.0125(质量比)、催化剂/aspha lt=0.025(质量比)、改性温度为140℃、改性时间为2.5 h时,改性沥青的软化点由49.5℃升高至63.5℃,针入度由68.5(0.1 mm)下降至39.1(0.1mm),改性沥青性能得到明显改善,其性能也趋于稳定。  相似文献   

15.
采用反应挤出的方式,首先对非极性的高密度聚乙烯进行共接枝改性,得到聚乙烯的接枝物;采用溶液本体聚合法将马来酸酐和苯乙烯在蒙脱土丙酮混合浊液中共聚,制得SM A/MM T核/壳复合改性材料。然后将其与改性后的HDPE熔融插层,得到分散效果良好的纳米复合材料。用FT-IR对接枝物进行了验证,并用XRD,TEM对复合体系的插层效果进行了分析和表征,用DSC对其结晶性能进行了研究。  相似文献   

16.
王岚  任敏达  李超 《复合材料学报》2017,34(10):2330-2336
为了研究多聚磷酸(PPA)对沥青的改性作用,分别制备了掺量为0.5%、1%、1.5%和2%(PPA与基体沥青的质量比)的PPA改性沥青。三大指标实验结果显示,随着PPA掺量的增加,针入度减小,软化点升高,延度减小,说明在沥青中掺入PPA使沥青高温性能得到改善而低温性能略有减弱。通过四组分分析(SARA)发现随着PPA掺量的增加,沥青中的胶质逐渐减少,沥青质逐渐增多,饱和分与芳香分基本不变。利用FTIR发现,相比基质沥青,PPA改性沥青的红外光谱整体图线发生了迁移,且出现了新的吸收峰,说明PPA改性机制为化学改性。利用AFM得到基质沥青与PPA改性沥青的形貌与相位图,分析发现掺入PPA后相位图中连续相(para-phase)面积明显减小,而分散相(peri-phase)面积明显增加,且蜜蜂结构(catana-phase)谷地尺寸变大,说明掺入PPA后沥青中沥青质含量将会增多,而低温抗裂性将有所减弱。  相似文献   

17.
为了将建筑行业所产生的大量废旧沥青瓦材料再生应用于道路建设中,促进循环利用,阐述了利用回收沥青瓦再生沥青混合料的可行性及相应再生方法,综述了回收沥青瓦改性沥青胶结料的粘度、抗车辙和低温抗开裂等性能以及回收沥青瓦再生沥青混合料的路用性能,指出未来进一步的研究建议。现有研究表明,沥青瓦改性沥青胶结料表现出更好的抗车辙性和低温性能,且低沥青瓦含量对其低温抗裂性能并未有明显影响,沥青瓦改性后因胶结料粘度提高而出现的硬化问题可通过引入生物改性技术来消除。回收沥青瓦材料加入沥青混合料中能有效降低脆化温度,提高混合料的抗车辙性能、抗疲劳开裂性及水稳定性。采用发泡工艺和添加剂可将回收沥青瓦材料再生技术与温拌技术相结合,从而表现出良好的环境和经济效益,为我国环保型路面研究提供了参考价值。  相似文献   

18.
锁利军 《功能材料》2022,(6):6224-6229
选择70#道路石油沥青作为基质沥青,将3%(质量分数)SBS和不同掺杂含量(5%,10%,15%和20%(质量分数))的橡胶粉作为改性剂掺入基质沥青,制备了橡胶粉/SBS复合改性沥青胶结料。通过针入度、软化点、延度和粘度等指标,研究了橡胶粉掺杂含量对复合改性沥青性能的影响,确定了其最佳掺杂量。采用荧光显微镜观察样品的荧光图像,借助傅里叶红外光谱(FT-IR)对样品的改性机理进行分析,采用室内热氧化老化试验研究了样品的抗老化性能。结果表明,当橡胶粉的掺杂量为15%(质量分数)时,复合改性沥青的针入度较低,软化点、延度和粘度均达到最大值,分别为64.8℃,18.1 cm和751 Pa·s,且复合改性沥青的颗粒细小,SBS和橡胶粉分散良好,没有发生明显的交联;FT-IR分析发现,复合改性沥青的吸光度随着橡胶粉掺杂量的增加而降低,特征峰的位置没有发生改变,复合改性沥青没有产生新物质,改性过程属于物理改性;老化性能测试发现,橡胶粉/SBS复合改性沥青的效果优于SBS改性沥青,随着橡胶粉掺杂量的增加,复合改性沥青的抗老化性能先增大后降低,当橡胶粉的掺杂量为15%(质量分数)时,抗老化性能最佳。  相似文献   

19.
傅珍  王涛  刘松然  唐钰杰 《功能材料》2024,(4):4001-4006+4012
为确定生物油对老化沥青性能的恢复能力,比选出再生能力较强的一种生物油并确定其最佳掺量,采用植物沥青、餐厨废弃油脂和工业用动物油3种生物油作为再生剂,分别对老化SBS改性沥青进行再生,通过测定生物油再生沥青的针入度、延度、软化点和布氏黏度并进行薄膜加热试验,研究生物油种类和掺量对老化沥青各项性能的影响规律。结果表明,3种生物油对老化SBS改性沥青的基础性能和耐老化性均有一定的恢复能力,其中餐厨废弃油脂对老化沥青再生能力较强,并且社会和经济效益较高,植物沥青和工业用动物油次之;餐厨废弃油脂被选为最佳再生生物油,掺量为4%时能够使老化SBS改性沥青的黏滞性和高温性能得到完全恢复,因此被确定为最佳掺量。  相似文献   

20.
采用熔融共混法制备了有机化累托石(OREC)改性沥青,以X射线衍射(XRD)表征了改性沥青的微观结构,并通过动态剪切流变仪(DSR)研究了OREC的用量对改性沥青流变性能的影响。XRD分析表明,OREC可与沥青熔融插层形成插层/剥离型纳米复合结构。DSR结果显示,OREC对沥青的低温(25℃~50℃)流变性能影响很小,而对沥青高温流变性能有显著改善。在高温区(50℃~80℃),OREC明显增大了沥青的复数模量,减小了其相位角,显著提高了沥青高温抗车辙能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号