首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study conducted friction stir welding (FSW) by using the butt welding process to join ferritic ductile iron plates and investigated the variations of microsturcture in the joined region formed after welding. No defects appeared in the resulting experimental weld, which was formed using a 3-mm thick ductile iron plate and tungsten carbide alloy stir rod to conduct FSW at a rotational speed of 982 rpm and traveling speed of 72 mm/min. The welding region was composed of deformed graphite, martensite phase, and dynamically recrystallized ferrite structures. In the surface region and on the advancing side (AS), the graphite displayed a striped configuration and the ferritic matrix transformed into martensite. On the retreating side (RS), the graphite surrounded by martensite remained as individual granules and the matrix primarily comprised dynamically recrystallized ferrite. After welding, diffusion increased the carbon content of the austenite around the deformed graphite nodules, which transformed into martensite during the subsequent cooling process. A micro Vickers hardness test showed that the maximum hardness value of the martensite structures in the weld was approximately 800 HV. An analysis using an electron probe X-ray microanalyzer (EPMA) indicated that its carbon content was approximately 0.7–1.4%. The peak temperature on the RS, 8 mm from the center of the weld, measured 630 °C by the thermocouple. Overall, increased severity of plastic deformation and process temperature near the upper stir zone (SZ) resulted in distinct phase transformation. Furthermore, the degree of plastic deformation on the AS was significantly greater than that on the RS, and relatively complete graphite granules and the fine ferrite grains resulting from dynamic recrystallization were observed on the RS.  相似文献   

2.
以0.02mm厚铜箔为标示材料,采用带三角平面圆锥形搅拌针对20mm厚7075-T6铝板进行焊接。通过测试沿焊缝厚度方向上温度场分布及观察标示材料分布状态,分析焊缝局部金属塑性流动行为特征。结果表明,沿焊缝厚度方向上自上而下的金属温度逐渐降低;焊缝上、下表面温度差约为90℃;同一厚度上相对称的两点,位于前进边金属的温度高于返回边约15℃。位于焊核区上部的铜箔呈细小颗粒状均匀分布;下部铜箔则呈层片状分布,且向前进边偏移。焊核区由多个呈纹路状、有序排列的洋葱环结构相互层叠而成,这与焊缝塑化金属沿轴向迁移方式发生变化有关。  相似文献   

3.
Curved welds were designed and the effects of the weld curvature radius and tool rotation direction on the microstructure of friction stir welded cast aluminum alloy joints were investigated. Results show that both the weld curvature radius and tool rotation direction have a significant influence on the microstructure of the curved joints during FSW. With decreasing weld curvature radius, the size of the tunnel defect is reduces and the proportion of fine Si particles in the stir zone increases. Si particles are finer and denser in the retreating side (RS) than that in the advancing side (AS) when both the welding direction and tool rotation direction are anticlockwise. However, when the welding direction is anticlockwise while the tool rotates clockwise, the proportions of fine Si particles decrease compared to the former situation. Furthermore, the tunnel defect is more likely to be present in the AS in the former situation.  相似文献   

4.
目的 为了拓展搅拌摩擦焊技术应用,对薄板搭接结构高速搅拌摩擦焊工艺优化与工程应用提供 借鉴与指导。方法 采用圆锥无螺纹搅拌针,进行了 6061 铝合金薄板搭接高速搅拌摩擦焊接,对接头界 面缺陷及其断裂模式进行分析,探讨了转速对 6061 铝合金薄板搭接接头成形及性能的影响规律。结果 发现在无螺纹圆锥搅拌针、高转速(6000~9000 r/min)条件下,接头塑性金属在后退侧易形成飞边流出, 导致下板前进侧出现孔洞缺陷,且随转速增大,界面缺陷尺寸逐渐增大,当转速达到 10 000 r/min 时, 孔洞尺寸有所减小,此时接头拉剪强度最高,为 123 MPa。对试样拉剪断裂位置分析发现,高速搭接接 头断裂位置主要有两种,分别断裂在结合界面处或在前进侧下板,且转速在 9000 r/min 以上越趋向于在 结合界面断裂。结论 高转速搭接焊接必须协调轴肩相貌、焊接工装约束等条件,保证接头塑性金属充 分流动而不流失,才能获得成形良好无缺陷的接头。  相似文献   

5.
Influence of spindle and weld speeds, metal location, direction of spindle rotation, and tool pin length on hooking in lap FSW of dissimilar aluminum alloys and the effect of hook on tensile and fatigue weld strength was studied. Optical images of the cross-section of the specimen welded at different process parameters were analyzed. The results indicate that increased spindle speed, reduced weld speed, higher tool pin length, clockwise spindle rotation, and locating the stronger material at the bottom of the joint increased the size of the hooking defect. Higher weld speeds and very high spindle speeds resulted in lower hook size on the advancing side (AS) compared to the retreating side (RS) of the joint. Welding with low weld speed would result in higher advancing side hook size compared to the retreating side. Friction stir weld joints fabricated with anti-clockwise spindle rotation has been found to have extremely low hook both on the AS and the RS of the joint. The tensile and fatigue strengths of the weld joints and plates are degraded by the hook. The fatigue strength of welded alloys could be improved by a double pass weld, the second pass welded immediately adjacent to the first pass.  相似文献   

6.
Dissimilar metals of 1045 carbon steel and 304 stainless steel are joined successfully by friction welding. The microstructure variation and mechanical properties are studied in detail. The weld interface can be clearly identified in central zone, while the two metals interlock with each other by the mechanical mixing in peripheral zone. On carbon steel side, a thin proeutectoid ferrite layer forms along weld interface. On stainless steel side, austenite grains are refined to submicron scale. The δ-ferrite existing in stainless steel decreases from base metal to weld interface and disappears near the weld interface. Severe plastic deformation plays a predominant role in rapid dissolution of δ-ferrite compared with the high temperature. Carbide layer consisting of CrC and Cr23C6 forms at weld interface because of element diffusion. Metastable phase CrC is retained at room temperature due to the highly non-equilibrium process and high cooling rate in friction welding. The fracture appearance shows dimple fracture mode in central zone and quasi-cleavage fracture mode in peripheral zone. Further analysis indicates that welding parameters govern tensile properties of the joint through influencing the thickness of carbide layer at weld interface and heterogeneous microstructure in thermo-mechanically affected zone on carbon steel side.  相似文献   

7.
目的 研究0.8 mm厚2024铝合金薄板在高转速搅拌摩擦搭接(FSLW)时对其焊接界面的影响规律。方法 通过采用铜粉作为标记材料,探究了高转速FSLW接头的微观组织、焊接界面形成及迁移的特征,揭示了高转速FSLW接头中转速对焊接界面迁移的影响规律。结果 焊接界面是由于原始界面上距焊缝中心线约轴肩半径距离的两侧金属因受到的热循环和机械力不足,难以形成原子间的结合,之后伴随塑性金属的流动,原始界面上距焊缝中心线约轴肩半径距离的两侧金属流向焊缝当中,进而形成未熔合界面。焊接界面的迁移是由于焊缝塑性金属发生了摩擦和挤压,进而引起了焊接界面的向上或向下迁移。结论 铝合金薄板高转速FSLW时,焊接界面在前进侧向上迁移,在后退侧向下迁移。随着转速增加,焊接界面迁移的垂直距离(沿板厚方向)逐渐减小。  相似文献   

8.
焊接参数对搅拌摩擦焊接质量的影响   总被引:1,自引:0,他引:1  
采用基于固体力学的有限元方法建立了搅拌摩擦焊接过程的三维数值模型,研究了在焊接参数不同的情况下搅拌摩擦焊接过程中力学特征的变化.数值模拟结果和试验结果都表明,等效塑性应变能近似地反映焊接构件焊缝区域材料显微结构的演化,较高的搅拌头转速和较低的焊速有利于提高焊缝的质量.焊接构件特定的等效塑性应变等值线可以较好的对应不同焊接区域的边界.随着搅拌头转速的提高,等效塑性应变随之增大,但搅拌探针与焊接构件交界面上的接触压力随之减小.等效塑性应变随着搅拌头平移速度的增大而减小.  相似文献   

9.
Solid-state ultrasonic spot welding (USW) was used to join Al/Mg/Al tri-layered clad sheets, aiming at exploring weldability and identifying failure mode in relation to the welding energy. It was observed that the application of a low welding energy of 100 J was able to achieve the optimal welding condition during USW at a very short welding time of 0.1 s for the tri-layered clad sheets. The optimal lap shear failure load obtained was equivalent to that of the as-received Al/Mg/Al tri-layered clad sheets. With increasing welding energy, the lap shear failure load initially increased and then decreased after reaching a maximum value. At a welding energy of 25 J, failure occurred in the mode of interfacial failure along the center Al/Al weld interface due to insufficient bonding. At a welding energy of 50 J, 75 J and 100 J, failure was also characterized by the interfacial failure mode, but it occurred along the Al/Mg clad interface rather than the center Al/Al weld interface, suggesting stronger bonding of the Al/Al weld interface than that of the Al/Mg clad interface. The overall weld strength of the Al/Mg/Al tri-layered clad sheets was thus governed by the Al/Mg clad interface strength. At a welding energy of 125 J and 150 J, thinning of weld nugget and extensive deformation at the edge of welding tip caused failure at the edge of nugget region, leading to a lower lap shear failure load.  相似文献   

10.
Friction stir lap linear welding is conducted on overlapped AZ31 magnesium plates with different welding tools. Welds are made mainly with the orientation such that the weld retreating side on the upper plate is to be placed under load. Welding tools consist of a concave shoulder and a pin having a cylindrical, or triangular, or pie shape. This work addresses the effects of tool geometry and process condition on lap shear strength of welds. The shape of the hook formed due to upward bending of the plate interface on the retreating side and the strength of friction stir processed material are quantitatively characterized. Compared to the cylindrical tool, the triangular tool effectively suppresses the hook on the retreating side due to enhanced horizontal material flow. This primarily leads to a 78% increase in optimized weld strength. A ‘pure’ shear surface present on the tool pin significantly reduces weld strength.  相似文献   

11.
在等离子弧搭接焊中,搭接焊接头的焊缝熔深是评价焊接质量的关键指标之一,而焊接过程中的热输入信息和熔池图像信息都与焊缝熔深有密切关系。本文通过建立304L不锈钢薄板等离子弧搭接焊数据采集系统,利用LabVIEW实时检测电信息,采用视觉传感技术实时获取薄板等离子弧搭接焊过程中的熔池图像,并通过图像处理方法获得熔池的几何参数信息,结合焊接工艺参数,选择峰值电流、峰值电压、焊接速度、离子气流量、保护气流量、熔池宽度和熔池后端长度作为输入量,焊缝熔深作为输出量,建立了基于支持向量机回归和BP神经网络的熔深预测模型。实验验证表明,采用径向基函数的支持向量机回归模型可以有效地对焊缝熔深进行预测,并具有很好的泛化能力,可为进一步实现在线优化焊接工艺参数提供依据。  相似文献   

12.
5 mm-Thick dissimilar AA2024-T3 and AA7075-T6 aluminum alloy sheets were friction stir lap welded in two joint combinations, i.e., (top) 2024/7075 (bottom) and 7075/2024. The influences of process conditions (welding speed and joint combination) on defects (hook and voids) features and mechanical properties of joints were investigated in detail. It was found that the hook deflects largely upwards into the stir zone (SZ) at lower welding speeds (50, 150 mm/min) in both combinations. The process conditions significantly affect the hook geometry which in return affects the lap shear strength. In all 2024/7075 joints, voids appear and the joints fracture from the tip of hook on AS along the SZ/TMAZ (thermomechanically affected zone) interface in lap shear test (tensile fracture mode). In 7075/2024 joints, the hook on RS horizontally extends a large distance into the bottom stir zone at higher welding speeds (225, 300 mm/min). The joints fracture in three modes: shear fracture along the lap interfaces, tensile fracture and the mix fracture of both. In both joint combinations, the lap shear strength generally increases with the increase of welding speed. 7075/2024 Joints show higher failure load than 2024/7075 joints at lower welding speeds while the opposite result appears at higher welding speeds.  相似文献   

13.
Scanning electrochemical microscopy(SECM) and scanning vibrating electrode technique(SVET) were used to investigate the electrochemical behaviour of the top surface of the 2098-T351 alloy welded by friction stir welding(FSW). The SVET technique was efficient in identifying the cathodic and anodic weld regions. The welding joint(WJ), which comprises the thermomechanically affected zone(TMAZ) and the stir zone(SZ), was cathodic relative to the heated affected zone(HAZ) and the base metal(BM). The reactivities of the welding joint at the advancing side(AS) and the retreating side(RS) were analyzed and compared using SECM technique in the competition mode by monitoring the dissolved oxygen as a redox mediator in 0.005 mol L~(-1) NaCl solution. The RS was more electrochemically active than the AS,and these results were correlated with the microstructural features of the welded alloy.  相似文献   

14.
A C* integral estimation method is proposed for a crack located in the weld with a mismatch in mechanical properties from the surrounding base material. The method involves the definition of an equivalent stress-creep strain rate (ESCSR) relationship based on the mechanical properties of both the weld and base materials and the geometrical dimension of welding seam. The value of creep fracture mechanics parameter C*, for the mismatched weldment, is then estimated using the proposed ESCSR in conjunction with the reference stress (RS) method where the reference stress is defined based on the plastic limit load and the GE/EPRI estimation scheme. Referring to the equivalent stress-plastic strain (ESPS) curve in R6 and SINTAP procedures, an approximate solution for the ESCSR relationship has been obtained. Detailed formulae for the compact tension (CT) specimens have been derived on the basis of limit load solutions. Nonlinear finite element analysis of 48 cases with various degrees of mismatch in creep behaviour and different dimension of welding seam has been performed for CT specimens. Overall good agreement between the ESCSR method and the FE results provides confidence in the use of the proposed method in practice.  相似文献   

15.
The tensile fracture location characterizations of the friction stir welded joints of the AA1050-H24 and AA6061-T6 Al alloys were evaluated in this study. The experimental results show that the fracture locations of the joints are different for the different Al alloys, and they are affected by the FSW parameters. When the joints are free of welding defects, the AA1050-H24 joints are fractured in the HAZ and TMAZ on the AS and the fracture parts undergo a large amount of plastic deformation, while the AA6061-T6 joints are fractured in the HAZ on the RS and the fracture surfaces are inclined a certain degree to the bottom surfaces of the joints. When some welding defects exist in the joints, the AA1050-H24 joints are fractured on the RS or AS, the AA6061-T6 joints are fractured on the RS, and all the fracture locations are near to the weld center. The fracture locations of the joints are dependent on the internal structures of the joints and can be explained by the microhardness profiles and defect morpho  相似文献   

16.
目的 探究高钢级管道不等壁厚环焊接头的局部应变集中规律,揭示其局部开裂的根本原因。方法 采用STT半自动根焊+自保护药芯焊丝半自动焊填充、盖面的方式焊接X80管道不等壁厚环,并利用DIC技术对3种不同错边量及根部成形的不等壁厚环焊接头进行全壁厚拉伸,观察其在拉伸过程中的应变规律。结果 不等壁厚环焊接头的应变集中主要发生在薄壁侧根部焊趾与厚壁侧盖面焊趾的连线区域,这是由于不等壁厚环焊接头受拉时会产生附加弯矩,该弯矩与薄壁侧根部焊趾及厚壁侧盖面焊趾处的应力集中相耦合使该区域发生应变集中。另外,错边量的存在会增大附加弯矩并使根部成形变差,因此错边量越大,应变集中区域面积越小、应变集中程度越高。定量分析结果表明,当薄壁侧管体远端应变达到0.5%时,3类成形接头根部最大应变分别为0.83%、9.60%、11.88%,盖面处最大应变分别为1.00%、7.10%、10.60%。结论 大的错边量或差的根部成形会使不等壁厚环焊接头局部出现严重的应变集中,若与焊接缺陷相耦合可能会导致接头局部损伤,为裂纹的萌生与扩展提供条件。因此,在焊接过程中应增加接头的组对精度、减小错边量。  相似文献   

17.
宋刚  李传瑜  郎强  刘黎明 《材料工程》2022,50(6):131-137
采用激光诱导钨极惰性气体保护(tungsten inert gas, TIG)电弧焊接技术,在未添加任何夹层和镀层的条件下,通过优化工艺,获得了AZ31B镁合金和DP980高强钢高质量搭接焊接头,重点研究TIG电弧电流对焊接接头成形和力学性能的影响规律。结果表明:电弧电流的增大会提高镁合金在高强钢的润湿铺展能力,提升焊缝宽度的同时减小润湿角。镁合金/钢焊接接头的最大拉伸载荷随着电弧电流的增大先升高后降低,接头断裂模式由沿界面断裂转变为沿焊缝断裂。当TIG电流为80 A、激光功率为350 W时,焊接接头最大平均拉伸载荷达到279 N/mm。焊缝宽度和界面层厚度的增大以及激光匙孔的钉扎作用共同提升了镁合金/钢的接头性能。  相似文献   

18.
采用数值模拟和试验相结合的方法对比研究了钛合金常规钨极氩弧焊(GTAW)及带热沉的钨极氩弧焊,即动态控制低应力无变形(DC-LSND)GTAW焊接过程中纵向应变场的形态与发展历史.DC-LSND GTAW焊接过程中,由于紧随热源之后热沉冷却介质的急冷作用,使得热沉作用部位产生强烈收缩,热源与热沉之间的极大温度梯度,对高温金属产生较强的拉伸作用,使得焊缝中拉伸塑性应变增大,近缝区压缩塑性应变减小,焊缝与近缝区的不协调应变减小.DC-LSND焊时,不但可以降低残余应变,减小变形;而且,在所选用的焊接条件下,DC-LSND GTAW焊缝中甚至还可获得拉伸的不协调应变.  相似文献   

19.
Friction stir welding (classical FSW) is considered to offer advantages over the traditional fusion welding techniques in terms of dissimilar welding. However, some challenges still exist in the dissimilar friction stir lap welding of the aluminum/copper (Al/Cu) metallic couple, among which the formation of the Al–Cu intermetallic compounds is the major problem. In the present research, due to the fact that the formation and growth of the intermetallic are significantly controlled by the thermal history, the underwater friction stir welding (underwater FSW) was employed for fabricating the weld, and the weld obtained by underwater FSW (underwater weld) was analyzed via comparing with the weld obtained under same parameters by classical FSW (classical weld). In order to investigate the effect of the external water on the thermal history, the K-type thermocouple was utilized to measure the weld temperature, and it is found that the water could decrease the peak temperature and shorten the thermal cycle time. The XRD results illustrate that the interface of the welds mainly consist of the Al–Cu intermetallic compounds such as CuAl2 and Cu9Al4 together with some amounts of Al and Cu, and it is also found that the amount of the intermetallic in the underwater weld is obvious less than in the classical weld. The SEM images and the EDS line scan results also illustrate that the Al–Cu diffusion interlayer at the Al–Cu interface of the underwater weld was obviously thinner than that of the classical weld.  相似文献   

20.
Cold metal transfer (CMT) welding has been successfully used to weld dissimilar metals widely. However, a few investigations were carried out on the lap welding of commercially pure titanium TA2 to pure copper T2 with ERCuNiAl copper wire by CMT technique. In this paper, the affected mechanism of lapped location between the two metals on the microstructure and tensile shear strength of joints was revealed. The results indicated that satisfactory lapped joints between commercially pure titanium TA2 and pure copper T2 could be achieved by CMT welding method. A layer of intermetallic compounds (IMCs), i.e. Ti2Cu, TiCu and AlCu2Ti presented in titanium-weld interface, and the weld metal was composed of α-Cu solid solution and Ti–Cu–Al–Ni–Fe multi-phase. The two joints had almost same tensile shear strength, 192.5–197.5 N/mm, and fractured in the heat affected zone (HAZ) of Cu with plastic fracture mode during tensile shear tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号