首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Passive samplers for polar organic compounds often use a polyethersulfone (PES) membrane to retain the particulate sorbent material (e.g., in a POCIS; polar organic chemical integrative sampler) or to reduce the sampling rate and thus extend the kinetic regime (e.g., in a Chemcatcher). The transport kinetics over the PES membrane are evaluated here in a short-term (6 days) and a long-term (32 days) experiment with POCIS and Chemcatchers. Passive samplers were placed in a channel with flowing river water that was spiked with 22 organic chemicals including pharmaceuticals, pesticides and biocides; with logK(ow) (logarithmic octanol-water partitioning coefficient) values between -2.6 and 3.8. Samplers were removed at intervals and membranes and sorbent material were extracted and analyzed with LC-MS/MS. Uptake kinetics of the compounds fell between two extremes: (1) charged chemicals and chemicals of low hydrophobicity did not accumulate in PES and rapidly transferred to the sorbent (e.g., diclofenac) and (2) more hydrophobic chemicals accumulated strongly in the PES and appeared in the sorbent after a lag-phase (e.g., diazinon and diuron). Sorption kinetics were modeled with a three-compartment first-order kinetic model to determine uptake and elimination rate constants and partitioning coefficients. Water PES partitioning coefficients fitted with the model correlated well with experimentally determined values and logK(ow). Sampling rates of Chemcatcher (0.02-0.10 L/d) and POCIS (0.02-0.30 L/d) showed similar patterns and correlated well. Thus the samplers are interchangeable in practical applications. Longer lag-phases may pose problems when calculating time-weighted average aqueous concentrations for short passive sampling windows and for a correct integrative sampling of fluctuating concentrations.  相似文献   

2.
Vertical pore water profiles of in situ PCBs were determined in a contaminated mudflat in San Francisco Bay, CA, 30 months after treatment using an activated carbon amendment in the upper layer of the sediment. Pore water concentrations were derived from concentrations of PCBs measured in two passive samplers; polyethylene (PE, 51 μm thick) and polyoxymethylene (POM, 17 μm thick) at different sediment depths. To calculate pore water concentrations from PCB contents in the passive samplers, an equilibrium approach and a first-order uptake model were applied, using five performance reference compounds to estimate pore water sampling rates. Vertical pore water profiles showed good agreement among the measurement and calculation methods with variations within a factor of 2, which seems reasonable for in situ measurements. The close agreements of pore water estimates for the two sampler materials (PE and POM) and the two methods used to translate uptake in samplers to pore water concentrations demonstrate the robustness and suitability of the passive sampling approach. The application of passive samplers in the sediment presents a promising method for site monitoring and remedial treatment evaluation of sorbent amendment or capping techniques that result in changes of pore water concentrations in the sediment subsurface.  相似文献   

3.
A novel passive air sampler was designed and tested that individually collects the gaseous and particulate phase polycyclic aromatic hydrocarbons (PAHs) in air. The sampler was calibrated against a conventional active sampler in an indoor environment. A PUF (polyurethane foam) disk and a piece of GFF (glass fiber filter) were installed in a sampling shelter for collecting gaseous and particulate phase PAHs, respectively. The passive samplers were deployed in seven indoor locations for 86 days. Six times during this period, 24-h conventional active sampling was conducted for calibration at an average interval of 17-days. Principle component analysis showed that the measured congener profile compositions were totally different between the gaseous and particulate phase PAHs, but similar between the passive and the active samples. This suggested that gaseous and particulate phase PAHs were primarily trapped by the PUF disk and GFF, respectively. Linear relationships between the passively and the actively measured and log-transformed concentrations were derived for calibration of both gaseous and particulate phase PAHs. The uptake rates of the sampler were 0.10 +/- 0.014 m3/d and 0.007 +/- 0.001 m3/d for gaseous and particulate phase PAHs, respectively. The rates were significantly lower than those reported in the literature using similar PUF samplers, mainly because of the special design with limited air circulation.  相似文献   

4.
Water-sampler equilibrium partitioning coefficients and aqueous boundary layer mass transfer coefficients for atrazine, diuron, hexazionone and fluometuron onto C18 and SDB-RPS Empore disk-based aquatic passive samplers have been determined experimentally under a laminar flow regime (Re = 5400). The method involved accelerating the time to equilibrium of the samplers by exposing them to three water concentrations, decreasing stepwise to 50% and then 25% of the original concentration. Assuming first-order Fickian kinetics across a rate-limiting aqueous boundary layer, both parameters are determined computationally by unconstrained nonlinear optimization. In addition, a method of estimation of mass transfer coefficients--therefore sampling rates--using the dimension-less Sherwood correlation developed for laminar flow over a flat plate is applied. For each of the herbicides, this correlation is validated to within 40% of the experimental data.The study demonstrates that for trace concentrations (sub 0.1 microg/L) and these flow conditions, a naked Empore disk performs well as an integrative sampler over short deployments (up to 7 days) for the range of polar herbicides investigated. The SDB-RPS disk allows a longer integrative period than the C18 disk due to its higher sorbent mass and/or its more polar sorbent chemistry. This work also suggests that for certain passive sampler designs, empirical estimation of sampling rates may be possible using correlations that have been available in the chemical engineering literature for some time.  相似文献   

5.
We present the development of a passive sampling device that combines chemical with biological assessment of water following time-integrating, long-term sampling. The new device, which was designated the Ceramic Toximeter, brings together the simplicity of the Ceramic Dosimeter as a ceramic membrane-based, solid-sorbent sampler and the uniqueness of a recently developed solid-phase, solvent-free bioassay. In this bioassay, Biosilon, i.e., polystyrene polymer beads, is used to present sorbed contaminants to vertebrate cells that adhere to the contaminant-loaded Biosilon and respond. Focusing on Biosilon as sorbent, its ability to accumulate 16 polycyclic aromatic hydrocarbons (PAHs) was explored. When tested up to 42 days in the laboratory or 1 year in groundwater at a contaminated gasworks site, Biosilon-filled Ceramic Toximeters yielded back-calculated time-weighted average aqueous PAH concentrations that agreed well with concentrations obtained by frequent snapshot sampling. The chosen bioassay response, the induction of 7-ethoxyresorufin-O-deethylase, was as predicted in the laboratory setting but could only partly be explained by the analyzed PAHs in the field. Based on this first assessment, the Ceramic Toximeter emerges as a resource efficient water monitoring device with a variety of potential future applications.  相似文献   

6.
The purpose of this study was to test in the laboratory the performance of a passive multilayer sampler (MLS) for obtaining detailed profiles of gas-phase volatile organic compounds (VOCs) in unsaturated sediments. The MLS is essentially a chain of isolated, cylindrical stainless steel dialysis cells filled with distilled water and closed with membranes at both ends. The sampling principle is based on passive equilibration of the unsaturated zone gas phase with water in the cells. Using trichloroethene (TCE) as a model VOC, and after testing the required equilibration time in the laboratory (about 50 h), results of a large container (210 L) experiment show that TCE concentrations obtained by the MLS deployed inside a well screen corresponded very well to the profile obtained by dialysis cells buried in the sediment. A field profile taken at the saturated-unsaturated interface region of a VOC-contaminated area using the MLS shows steep TCE concentration gradients (1119 microg TCE/L-air/cm) in the gas phase of the unsaturated zone just above the water table.  相似文献   

7.
Estrogenicity of river water is highly variable and it is difficult to obtain an average measure of the estrogenicity. Consequently it is difficult to tie the estrogenic effects observed in fish to their level of exposure to estrogens. To get a better handle on average estrogenic exposure we tested a recently developed passive sampling system (polar organic chemical integrative sampler, POCIS). In addition, we investigated the bioaccumulation of estrogens in caged brown trout and measured plasma vitellogenin in males as a bioindicator of estrogenic effects. We developed a mini-caging method to suit the hydrological conditions in small rivers and to improve upon the often poor survival of salmonids in caging trials. POCISs were positioned upstream and downstream of 5 sewage treatment works' discharges and left on site for 3 weeks (as were the caged fish), during which period 3 water grab samples were taken at each site. Concentrations of estrogens were determined using a yeast-based reporter gene assay and chemical analysis. Results from grab sampling, passive sampling, and bioaccumulation were correlated; however, plasma vitellogenin concentrations were elevated at only 1 of 5 sites. POCISs provide an integrated and biologically meaningful measure of estrogenicity in thatthey accumulate estrogens in a pattern similar to that of brown trout. Mini-caging appears a significant methodological advance; no fish were lost, moreover, all fish survived in excellent health.  相似文献   

8.
An in situ solid-phase extraction method, thin-layer chromatography (TLC) passive sampling, was investigated as a screening method for determining the presence of organic compounds in water using laboratory experiments and field applications. The TLC passive sampler developed in this research enables the spatial and temporal distributions of organic compounds to be determined qualitatively with little expense. The materials for the sampler developed here cost dollar 1.60 each. By first identifying the areas where a pollutant is present using the TLC passive sampling screening method, total analytical costs for monitoring programs may be reduced by eliminating unnecessary conventional analyses for locations where the pollutant is not present. Two organophosphorus pesticides, diazinon and chlorpyrifos, were used as a model for the development and as a potential application of the TLC passive sampling method. Passive sampler adsorption kinetics, enrichment factors, and extraction efficiencies were determined from batch experiments with exposure times ranging from 1 h to 4 weeks. In field applications, TLC passive sampling was conducted in natural and engineered systems with two silica gel extraction media, C2 and C18. Diazinon and chlorpyrifos were detected by analyzing the adsorbed compounds by high-performance liquid chromatography with ultraviolet detection.  相似文献   

9.
Neutral perfluorinated alkyl substances (PFASs), which are thought to be volatile precursors of environmentally ubiquitous perfluorocarboxylates (PFCAs) and perfluorooctanesulfonate (PFOS), were quantified in XAD-2 resin based passive air samplers deployed along an altitudinal transect from 800 to 2740 m above sea level (asl) in Western Canada (based at N51degrees 20' W117degrees 00') over the spring and summer seasons of 2004. The amounts of fluorotelomer alcohols (FTOHs) and perfluorinated sulfonamido alcohols (FOSEs) sequestered in the samplers increased with altitude, being lowest at an elevation of 1300 m asl and highest at either the 2340 or the 2740 m asl sites. A variety of potential reasons for these gradients are discussed, including changes in sampler uptake kinetics and phase capacity caused by changes in atmospheric pressure,temperature, and wind speed. Vapor phase concentrations were estimated to range from 3.7 to 19 pg m(-3) for perfluorinated sulfonamides (FOSAs) and from below detection limits (25 pg m(-3)) to 88 pg m(-3) for FOSEs. Over a similar altitudinal range (800-2350 m asl), 9 L lake water samples were collected in stainless steel cans, extracted with solid phase extraction columns, and analyzed for PFCAs and PFOS. Aqueous concentrations in lake water, ranging from 0.07 to 1.0 ng L(-1) for single PFCAs and from 0.04 to 0.1 ng L(-1) for PFOS, were more constant with altitude and were not correlated with the amount of the precursor compounds in the atmosphere. The relative abundance of FTOHs in air and PFCAs in water supports atmospheric FTOH degradation as the source of PFCAs in the mountain lakes.  相似文献   

10.
11.
The potential presence of steroid hormones in runoff from sites where biosolids have been used as agricultural fertilizers is an environmental concern. A study was conducted to assess the potential for runoff of seventeen different hormones and two sterols, including androgens, estrogens, and progestogens from agricultural test plots. The field containing the test plots had been applied with biosolids for the first time immediately prior to this study. Target compounds were isolated by solid-phase extraction (water samples) and pressurized solvent extraction (solid samples), derivatized, and analyzed by gas chromatography-tandem mass spectrometry. Runoff samples collected prior to biosolids application had low concentrations of two hormones (estrone <0.8 to 2.23 ng L(-1) and androstenedione <0.8 to 1.54 ng L(-1)) and cholesterol (22.5 ± 3.8 μg L(-1)). In contrast, significantly higher concentrations of multiple estrogens (<0.8 to 25.0 ng L(-1)), androgens (<2 to 216 ng L(-1)), and progesterone (<8 to 98.9 ng L(-1)) were observed in runoff samples taken 1, 8, and 35 days after biosolids application. A significant positive correlation was observed between antecedent rainfall amount and hormone mass loads (runoff). Hormones in runoff were primarily present in the dissolved phase (<0.7-μm GF filter), and, to a lesser extent bound to the suspended-particle phase. Overall, these results indicate that rainfall can mobilize hormones from biosolids-amended agricultural fields, directly to surface waters or redistributed to terrestrial sites away from the point of application via runoff. Although concentrations decrease over time, 35 days is insufficient for complete degradation of hormones in soil at this site.  相似文献   

12.
The importance of monitoring the transport of organic contaminants in soil and groundwater, and the pros and cons of existing sampling methods, are outlined. A new, alternative sampling method is proposed, using a passive sampler that functions as a water-permeable, semi-infinite sink for passing solutes of interest. Tracers integrated in the device store information on the volume of water passing through the sampler during the installation period. The conceptual basis of the sampling method is described. This device enables flux-proportional monitoring of the concentrations of mobile contaminants in the soil and groundwater. 14C-labeled phenanthrene (PHEN) and glyphosate (GLY) are used as case study compounds in laboratory experiments. The sorption capacities and uptake kinetics of 13 adsorbents are screened and compared, as well as the dissolution kinetics of three tracer salts: calcium citrate, calcium fluoride (CaF2), and calcium hydrogen phosphate (CaHPO4). The application of the passive sampler is then demonstrated in long-term laboratory experiments, using large soil columns under steady-state hydraulic conditions. The accumulated flux of PHEN was sampled with an accuracy of 3.6%-17.8%, using graphitized carbon, hexagonal mesoporous silica, and cross-linked polymers as adsorbents. The accumulated flux of GLY was sampled with an accuracy of 12.4%, using gamma-alumina as an adsorbent. The advantages and limitations of this new environmental monitoring method are discussed.  相似文献   

13.
Air was sampled for one year in the central valley of Costa Rica using an active high-volume sampler as well as passive samplers (PAS) based on polyurethane foam (PUF) disks and XAD-resin filled mesh cylinders. Extracts were analyzed for pesticides that are either banned or currently used in Costa Rican agriculture. Sampling rates for PUF-based passive air samplers, determined from the loss of depuration compounds spiked on the disks prior to deployment averaged 5.9 +/- 0.9 m3 x d(-1) and were higher during the windier dry season than during the rainy season. Sampling rates for the XAD-based passive sampler were determined from the slopes of linear relationships that were observed between the amount of pesticide sequestered in the resin and the length of deployment, which varied from 4 months to 1 year. Those sampling rates increased with decreasing molecular size of a pesticide, and their average of 2.1 +/- 1.5 m3 x d(-1) is higher than rates previously reported for temperate and polar sampling sites. Even though the trends of the sampling rate with molecular size and temperature are consistent with the hypothesis that molecular diffusion controls uptake in passive samplers, the trends are much more pronounced than a direct proportionality between sampling rate and molecular diffusivity would suggest. Air concentrations derived by the three sampling methods are within a factor of 2 of each other, suggesting that properly calibrated PAS can be effective tools for monitoring levels of pesticides in the tropical atmosphere. In particular, HiVol samplers, PUF-disk samplers, and XAD-based passive samplers are suitable for obtaining information on air concentration variability on the time scale of days, seasons and years, respectively. This study represents the first calibration study for the uptake of current use pesticides by passive air samplers.  相似文献   

14.
Solid-phase microextraction (SPME) has been used as an in situ sampling technique for a wide range of volatile organic chemicals, but SPME field sampling of nonvolatile organic pollutants has not been reported. This paper describes the development of an SPME-based sampling method employing a poly(dimethylsiloxane) (PDMS)-coated (100-microm thickness) fiber as the sorbent phase. The laboratory-calibrated PDMS-coated fibers were used to construct SPME samplers, and field tests were conducted at three coastal locations off southern California to determine the equilibrium sampling time and compare the efficacy of the SPME samplers with that of an Infiltrex 100 water pumping system (Axys Environmental Systems Ltd., Sidney, British Columbia, Canada). p,p'-DDE and o,p'-DDE were the components consistently detected in the SPME samples among 42 polychlorinated biphenyl congeners and 17 chlorinated pesticidestargeted. SPME samplers deployed attwo locations with moderate and high levels of contamination for 18 and 30 d, respectively, attained statistically identical concentrations of p,p'-DDE and o,p'-DDE. In addition, SPME samplers deployed for 23 and 43 d, respectively, at a location of low contamination also contained statistically identical concentrations of p,p'-DDE. These results indicate that equilibrium could be reached within 18 to 23 d. The concentrations of p,p'-DDE, o,p'-DDE, or p,p'-DDD obtained with the SPME samplers and the Infiltrex 100 system were virtually identical. In particular, two water column concentration profiles of p,p'-DDE and o,p'-DDE acquired by the SPME samplers at a highly contaminated site on the Palos Verdes Shelf overlapped with the profiles obtained by the Infiltrex 100 system in 1997. The field tests not only reveal the advantages of the SPME samplers compared to the Infiltrex 100 system and other integrative passive devices but also indicate the need to improve the sensitivity of the SPME-based sampling technique.  相似文献   

15.
Two types of passive samplers--semipermeable membrane devices (SPMDs) and polar organic chemical integrative samplers (POCIS)--were deployed in spring 2008 to assess bioavailable concentrations of aquatic contaminants in five cave streams and resurgences in Perry County, Missouri. Study sites represent areas of high cave biodiversity and the only known habitat for grotto sculpin (Cottus carolinae). Time-weighted average (TWA) water concentrations were calculated for 20 compounds (n = 9 SPMDs; n = 11 POCIS) originating primarily from agricultural sources, including two organochlorine insecticides, dieldrin and heptachlor epoxide, which were found at levels exceeding U.S. EPA criteria for the protection of aquatic life. GIS data were used to quantify and map sinkhole distribution and density within the study area. Infiltration of storm runoff and its influence on contaminant transport were also evaluated using land cover and hydrological data. This work provides evidence of cave stream contamination by a mix of organic chemicals and demonstrates the applicability of passive samplers for monitoring water quality in dynamic karst environments where rapid transmission of storm runoff makes instantaneous water sampling difficult.  相似文献   

16.
A new method was developed to assess environmental tobacco smoke in air. The method is based on passive sampling and subsequent measurement of the concentration of 3-ethenylpyridine, a vapor-phase compound specific to tobacco smoke. Air samples were collected using a 3M organic vapor monitor. Tests were carried out in a dynamic chamber to determine the sampling rate (25.7 cm3/min). 3-Ethenylpyridine was desorbed from the sampler with 1 mL of pyridine/toluene mixture. 3-Ethenylpyridine was quantified by gas chromatography/mass spectrometry. The limit of detection was 0.01 microgram/sample, corresponding to a concentration of 0.27 microgram/m3 air calculated for a sampling period of 24 h. Field measurements were carried out to test the performance of the method. Mean concentrations ranging from 1.3 to 5.3 micrograms/m3 were measured for 3-ethenylpyridine in smoking environments, but no 3-ethenylpyridine was detected in nonsmoking environments. Active sampling using charcoal tubes was used as a reference method in the chamber tests and field measurements. Individual exposures can be easily and accurately measured by means of the passive sampler. Because of simple sample treatment, the method is also well-suited for large-scale monitoring of environmental tobacco smoke.  相似文献   

17.
Understanding the interactions between organic contaminants and carbon nanomaterials is essential for evaluating the materials' potential environmental impact and their application as sorbent. Although a great deal of work has been published in the past years, data are still limited in terms of compounds, concentrations, and conditions investigated. We applied a passive sampling method employing polyoxymethylene (POM-SPE) to gain a better understanding of the interactions between polycyclic aromatic hydrocarbons (PAHs) and multiwalled carbon nanotubes (CNTs) over a 6 orders of magnitude wide concentration range. In the low-concentration range (pg-ng L(-1)), sorption of phenanthrene and pyrene was linear on a nonlogarithmic scale. Here, sorption could thus be described using a single sorption coefficient. Isotherm fits over the entire concentration range showed that (i) monolayer sorption models described the data very well, and (ii) the CNTs sorption capacity was directly related to their surface area. Sorption coefficients for 13 PAHs (11 of which have not been reported to date) were also measured at environmentally relevant low concentrations. No competition seemed to occur in the low-concentration range and sorption affinity was directly related to the solubility of the subcooled liquid of the compounds.  相似文献   

18.
Semipermeable membrane devices (SPMDs) are passive samplers used to measure the vapor phase of organic pollutants in air. This study tested whether extremely high wind-speeds during a 21-day sampling increased the sampling rates of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), and whether the release of performance reference compounds (PRCs) was related to the uptakes at different wind-speeds. Five samplers were deployed in an indoor, unheated, and dark wind tunnel with different wind-speeds at each site (6-50 m s(-1)). In addition, one sampler was deployed outside the wind tunnel and one outside the building. To test whether a sampler, designed to reduce the wind-speeds, decreased the uptake and release rates, each sampler in the wind tunnel included two SPMDs positioned inside a protective device and one unprotected SPMD outside the device. The highest amounts of PAHs and PCBs were found in the SPMDs exposed to the assumed highest wind-speeds. Thus, the SPMD sampling rates increased with increasing wind-speeds, indicating that the uptake was largely controlled by the boundary layer at the membrane-air interface. The coefficient of variance (introduced by the 21-day sampling and the chemical analysis) for the air concentrations of three PAHs and three PCBs, calculated using the PRC data, was 28-46%. Thus, the PRCs had a high ability to predict site effects of wind and assess the actual sampling situation. Comparison between protected and unprotected SPMDs showed that the sampler design reduced the wind-speed inside the devices and thereby the uptake and release rates.  相似文献   

19.
A method for the analysis of phenolic estrogenic active compounds in surface and drinking water in the picogram per liter range is described. Besides the widely used monomer bisphenol A, 4-tert-octylphenol [4-(1,1,3,3-tetramethylbutyl)phenol] and the technical isomer mixture of 4-nonylphenol; phenolic steroid hormones such as the endogenous estrogens estrone, 17alpha-estradiol, and 17beta-estradiol; and the exogenous estrogen 17alpha-ethinylestradiol were determined in water at the 20-200 pg/L level. Water samples from 1 to 5 L were extracted by solid-phase extraction (SPE) on a cartridge system containing LiChrolut EN as sorbent. The phenols and steroids were converted into their pentafluorobenzoylate esters in an extractive derivatization reaction. The derivatives were then determined by high-resolution gas chromatography with negative chemical ionization mass spectrometric detection (HRGC-(NCI)-MS) in the selected ion mode (SIM). All results were also confirmed by HRGC with electron capture detection (ECD). This highly sensitive and specific method gives a limit of detection (LOD) of 20 pg/L for bisphenol A and 4-tert-octylphenol in drinking water samples and 50 pg/L in STW effluent, respectively. The LODs for technical 4-nonylphenol, 17alpha-ethinylestradiol, and other estrogens are in the range of 50 pg/L in drinking water to 200 pg/L in STW effluent, respectively. In all river water samples in southern Germany, bisphenol A was found in concentrations ranging from 500 pg/L up to 16 ng/L, 4-nonylphenol was from 6 up to 135 ng/L, and the steroids were from 200 pg/L up to 5 ng/L. In drinking water, bisphenol A was found in concentrations ranging from 300 pg/L to 2 ng/L, 4-nonylphenol was from 2 to 15 ng/L, 4-tert-octylphenol was from 150 pg/L to 5 ng/L, and the steroids were from 100 pg/L to 2 ng/L. Mean recoveries over the whole analytical protocol, measured in bidistilled water, generally exceeded 70%. These results indicate that environmental endocrine-disrupting estrogens are not completely removed in the process of sewage treatment but are carried over into the general aquatic environment. After ground passage, they can eventually be found in drinking water.  相似文献   

20.
Lipid-free polyethylene membrane tubing (LFT) has been further developed in response to a growing need for an inexpensive and simple time-integrative sampling device for dissolved hydrophobic contaminants in water. The LFT sampler is based on the diffusion of dissolved hydrophobic target compounds through the aqueous boundary layer and into the polyethylene membrane, mimicking uptake by organisms. We demonstrate through laboratory and field validation studies that LFT provided the same benefits as many other passive sampling devices, withoutthe potential of analytical interference from lipid impurities. A total of 370 LFTs and semipermeable membrane devices were deployed for 21 days in paired studies at highly urbanized, undeveloped, and two Superfund sites, representing several river conditions. A simple internal surrogate spiking method served as an in situ calibration indicator of the effects of environmental conditions on the uptake rates. A modified extraction method for the LFT increased recoveries while decreasing solvent use and labor compared to other organic extraction procedures. LFT sampling rates were estimated using ratios, in situ calibration and modeling for over 45 target analytes, including PAHs, PCBs, and pesticides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号