首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We demonstrate microscopic time-resolved two-dimensional (2D) imaging that is based on a femtosecond amplifying optical Kerr gate (fs-amp OKG). The contribution of the optical nonlinear effects to the transverse imaging performance and the limit of the transverse resolving power are investigated. The optical Kerr effect in the excited state with amplification, used in the fs-amp OKG, does not deteriorate the quality of the time-resolved image at transverse resolutions up to at least 5.5 microm. We obtain a femtosecond-time-resolved 2D image of a microscopic object with a transverse resolution of 1.7 microm.  相似文献   

2.
The influence of the size parameter of the scatterers on ultrafast optical Kerr gate (OKG) imaging is investigated in highly scattering poly-disperse turbid media. The results show that in a poly-disperse turbid medium, which in our case, is a suspension of two different sized mono-disperse microspheres, the temporal and spatial behaviors of the light pulses transmitted through it are dominated by the smaller microspheres. The contrasts of the OKG images for the poly-disperse microsphere sample are closer to the contrasts of the OKG images for the smaller sized mono-disperse microsphere sample.  相似文献   

3.
Cha S  Lin PC  Zhu L  Sun PC  Fainman Y 《Applied optics》2000,39(16):2605-2613
A confocal microscope profilometer, which incorporates chromatic depth scanning with a diffractive optical element and a digital micromirror device for configurable transverse scanning, provides three-dimensional (3D) quantitative measurements without mechanical translation of either the sample or the microscope. We used a microscope with various objective lenses (e.g., 40x, 60x, and 100x) to achieve different system characteristics. With a 100x objective, the microscope acquires stable measurements over a 320 mum x 240 mum surface area with a depth resolution of 0.39 mum at a 3-Hz scan rate. The total longitudinal field of view is 26.4 mum for a wavelength tuning range of 48.3 nm. The FWHM value of the longitudinal point-spread function is measured to be 0.99 mum. We present 3D measurements of a four-phase-level diffractive element and an integrated-circuit chip. The resolution and the accuracy are shown to be equivalent to those found with use of conventional mechanical scanning.  相似文献   

4.
We demonstrated the time-gated ballistic imaging technique using a femtosecond optical Kerr gate (OKG) of bismuth–plumbum oxide glass, the nonlinear optical properties of which were also investigated. The third-order nonlinear refractive-index n2 of the bismuth–plumbum oxide glass was measured to be 2.19?×?10?15?cm2/W, and the nonlinear response time was estimated to be shorter than 180?fs. For the time-gated ballistic imaging, the maximum measurable optical density of turbid media using the OKG of bismuth–plumbum oxide glass was 9.3, while only 7.0 for the OKG of quartz glass. And the intensities of the images for the bismuth–plumbum oxide glass were approximately two orders of magnitude higher than that for the quartz glass. The experimental results indicated that the bismuth–plumbum oxide glass was an excellent optical material for nonlinear optical applications.  相似文献   

5.
A three-dimensional (3-D) optical imaging system offering high resolution in all three dimensions, requiring minimum manipulation and capable of real-time operation, is presented. The system derives its capabilities from use of the superstructure grating laser source in the implementation of a laser step frequency radar for depth information acquisition. A synthetic aperture radar technique was also used to further enhance its lateral resolution as well as extend the depth of focus. High-speed operation was made possible by a dual computer system consisting of a host and a remote microcomputer supported by a dual-channel Small Computer System Interface parallel data transfer system. The system is capable of operating near real time. The 3-D display of a tunneling diode, a microwave integrated circuit, and a see-through image taken by the system operating near real time are included. The depth resolution is 40 mum; lateral resolution with a synthetic aperture approach is a fraction of a micrometer and that without it is approximately 10 mum.  相似文献   

6.
We have developed an improved x-ray imaging system based on spherically curved crystals. It is designed and used for diagnostics of targets ablatively accelerated by the Nike KrF laser. A spherically curved quartz crystal (d = .?, R = mm) has been used to produce monochromatic backlit images with the He-like Si resonance line (1865 eV) as the source of radiation. The spatial resolution of the x-ray optical system is 1.7 mum in selected places and 2-3 mum over a larger area. Time-resolved backlit monochromatic images of polystyrene planar targets driven by the Nike facility have been obtained with a spatial resolution of 2.5 mum in selected places and 5 mum over the focal spot of the Nike laser.  相似文献   

7.
Day R  Lacot E  Stoeckel F  Berge B 《Applied optics》2001,40(12):1921-1924
A new method analogous to three-dimensional confocally based sensing is proposed. This method uses the technique of laser optical feedback imaging, which takes advantage of the resonant sensitivity of a short-cavity laser to frequency-shifted optical feedback for highly sensitive detection, making it ideal for surface and volume measurements of noncooperative targets. Rapid depth scanning is made possible by use of an electrically controlled variable-focus lens. The system is able to detect height discontinuities, and because detection occurs along the axis of projection the system does not have problems of shadow. Preliminary results for a depth range of 15 mm and a resolution of 100 mum are presented.  相似文献   

8.
Gosselin KR  Renfro MW 《Applied optics》2012,51(11):1671-1680
Three-dimensional (3D) images of flame emission are reported using a single direction of optical access. A Cassegrain system was designed with narrow depth of field. Images from this system are dominated by emission from the focused object plane with defocused contributions from out-of-plane structures. Translation of one mirror in the system allows for scanning the object plane through the flame. Images were taken at various depths to create a family of images. Reconstruction of the 3D flame structure was accomplished using a maximum entropy algorithm adapted for use with 3D imaging. Spatial resolution in the direction of imaging is examined using laminar flames with variable offset.  相似文献   

9.
Shin DH  Lee B  Kim ES 《Applied optics》2005,44(36):7749-7753
We present the characteristics of integral imaging systems with large depth of focus (DOF) by use of two kinds of illumination: plane illumination and diffusing illumination. For each system, we perform ray analysis based on ray optics. To check the visual quality through optical experiments, we use an average image of observed images picked up at various positions within a large DOF. The synthesized elemental images for a three-dimensional (3-D) object with two character patterns were displayed in an optical system and its reconstruction experiments are performed. Experimental results show that use of diffusing illumination can improve visual quality of reconstruction 3-D images in depth-priority integral imaging.  相似文献   

10.
We have developed a compact, multimodal instrument for simultaneous acquisition of en face quasi-confocal fundus images and adaptive-optics (AO) spectral-domain optical coherence tomography (SDOCT) cross-sectional images. The optical system including all AO and SDOCT components occupies a 60x60 cm breadboard that can be readily transported for clinical applications. The AO component combines a Hartmann-Shack wavefront sensor and a microelectromechanical systems-based deformable mirror to sense and correct ocular aberrations at 15 Hz with a maximum stroke of 4 microm. A broadband superluminescent diode source provides 4 mum depth resolution for SDOCT imaging. In human volunteer testing, we observed up to an 8 dB increase in OCT signal and a corresponding lateral resolution of <10 microm as a result of AO correction.  相似文献   

11.
激光三角法距离传感:散斑的影响   总被引:7,自引:2,他引:5  
描述了一个激光三角法距离传感,并用于鞋楦三维测量。讨论了系统的静态和动态测量误差,指出其深度分辨率主要由散斑决定,实验表明 ,增加透镜孔径或在成象透镜前加一随机振动位相掩膜均可极大改善深度分辨率。  相似文献   

12.
Zhang E  Laufer J  Beard P 《Applied optics》2008,47(4):561-577
A multiwavelength backward-mode planar photoacoustic scanner for 3D imaging of soft tissues to depths of several millimeters with a spatial resolution in the tens to hundreds of micrometers range is described. The system comprises a tunable optical parametric oscillator laser system that provides nanosecond laser pulses between 600 and 1200 nm for generating the photoacoustic signals and an optical ultrasound mapping system based upon a Fabry-Perot polymer film sensor for detecting them. The system enables photoacoustic signals to be mapped in 2D over a 50 mm diameter aperture in steps of 10 microm with an optically defined element size of 64 microm. Two sensors were used, one with a 22 microm thick polymer film spacer and the other with a 38 mum thick spacer providing -3 dB acoustic bandwidths of 39 and 22 MHz, respectively. The measured noise equivalent pressure of the 38 microm sensor was 0.21 kPa over a 20 MHz measurement bandwidth. The instrument line-spread function (LSF) was measured as a function of position and the minimum lateral and vertical LSFs found to be 38 and 15 microm, respectively. To demonstrate the ability of the system to provide high-resolution 3D images, a range of absorbing objects were imaged. Among these was a blood vessel phantom that comprised a network of blood filled tubes of diameters ranging from 62 to 300 microm immersed in an optically scattering liquid. In addition, to demonstrate the applicability of the system to spectroscopic imaging, a phantom comprising tubes filled with dyes of different spectral characteristics was imaged at a range of wavelengths. It is considered that this type of instrument may provide a practicable alternative to piezoelectric-based photoacoustic systems for high-resolution structural and functional imaging of the skin microvasculature and other superficial structures.  相似文献   

13.
Slit-scanning confocal microendoscope for high-resolution in vivo imaging   总被引:3,自引:0,他引:3  
We discuss the design and construction of a novel imaging system in which a fiber-optic imaging bundle and miniature optical and mechanical components are used to allow confocal fluorescence microscopy in remote locations. The instrumentation has been developed specifically for cellular examination of tissue for optical biopsy. Miniaturization of various components makes the device usable in a clinical setting. The numerical aperture of the beam in the tissue is 0.5, and the field of view is 430 mum. The measured lateral resolution of the system is 3.0 mum. The axial point and the axial planar response functions of the confocal system were measured with a FWHM of 10 and 25 mum, respectively. In vitro and in vivo images obtained with cell cultures, human tissue specimens, and animal models indicate that the performance of the device is adequate for microscopic evaluation of cells.  相似文献   

14.
The design and implementation of a prototype time-of-flight optical ranging system based on the time-correlated single-photon-counting technique are described. The sensor is characterized in terms of its longitudinal and transverse spatial resolution, single-point measurement time, and long-term stability. The system has been operated at stand-off distances of 0.5-5 m, has a depth repeatability of <30 mum, and has a lateral spatial resolution of <500 mum.  相似文献   

15.
Synthetic aperture techniques with a virtual source element   总被引:1,自引:0,他引:1  
A new imaging technique has been proposed that combines conventional B-mode and synthetic aperture imaging techniques to overcome the limited depth of field for a highly focused transducer. The new technique improves lateral resolution beyond the focus of the transducer by considering the focus a virtual element and applying synthetic aperture focusing techniques. In this paper, the use of the focus as a virtual element is examined, considering the issues that are of concern when imaging with an array of actual elements: the tradeoff between lateral resolution and sidelobe level, the tradeoff between system complexity (channel count/amount of computation) and the appearance of grating lobes, and the issue of signal to noise ratio (SNR) of the processed image. To examine these issues, pulse-echo RF signals were collected for a tungsten wire in degassed water, monofilament nylon wires in a tissue-mimicking phantom, and cyst targets in the phantom. Results show apodization lowers the sidelobes, but only at the expense of lateral resolution, as is the case for classical synthetic aperture imaging. Grating lobes are not significant until spatial sampling is more than one wavelength, when the beam is not steered. Resolution comparable to the resolution at the transducer focus can be achieved beyond the focal region while obtaining an acceptable SNR. Specifically, for a 15-MHz focused transducer, the 6-dB beamwidth at the focus is 157 mum, and with synthetic aperture processing the 6-dB beamwidths at 3, 5, and 7 mm beyond the focus are 189 mum, 184 mum, and 215 mum, respectively. The image SNR is 38.6 dB when the wire is at the focus, and it is 32.8 dB, 35.3 dB, and 38.1 dB after synthetic aperture processing when the wire is 3, 5, and 7 mm beyond the focus, respectively. With these experiments, the virtual source has been shown to exhibit the same behavior as an actual transducer element in response to synthetic aperture processing techniques.  相似文献   

16.
Meemon P  Lee KS  Murali S  Rolland J 《Applied optics》2008,47(13):2452-2457
The optical system design of a dynamic focus endoscopic probe for optical coherence tomography is reported. The dynamic focus capability is based on a liquid lens technology that provides variable focus by changing its curvatures in response to an electric field variation. The effects of a cylindrical exit window present, in practice, for a catheter were accounted for. Degradation in image quality caused by this window was corrected to get diffraction limited imaging performance. As a result, the dynamically focusing catheter with a lateral resolution ranging from 4 to 6 mum through an approximately 5 mm imaging distance was designed without mechanically refocusing the system.  相似文献   

17.
Haim H  Konforti N  Marom E 《Applied optics》2012,51(14):2739-2746
Present determination of optical imaging systems specifications are based on performance values and modulation transfer function results carried with a 1D resolution template (such as the USAF resolution target or spoke templates). Such a template allows determining image quality, resolution limit, and contrast. Nevertheless, the conventional 1D template does not provide satisfactory results, since most optical imaging systems handle 2D objects for which imaging system response may be different by virtue of some not readily observable spatial frequencies. In this paper we derive and analyze contrast transfer function results obtained with 1D as well as 2D templates.  相似文献   

18.
Sherif SS  Cathey WT 《Applied optics》2002,41(29):6062-6074
A hybrid imaging system combines a modified optical imaging module and a digital postprocessing step. We define what to our knowledge is a new metric to quantify the blurring of a defocused image that is more suitable than the defocus parameter for describing defocused hybrid imaging systems. We use this metric to design a pupil phase grating to reduce the depth of field, thereby increasing the axial resolution, of an incoherent hybrid imaging system using quasi-monochromatic illumination. By introducing this grating at the exit pupil and digitally processing the output of the detector, we reduce the depth of field by more than a factor of 2. Finally, we examine the effect of using a CCD optical detector, instead of an ideal optical detector, on the reduction of the depth of field.  相似文献   

19.
Exogenous contrast‐agent‐assisted NIR‐II optical‐resolution photoacoustic microscopy imaging (ORPAMI) holds promise to decipher wide‐field 3D biological structures with deep penetration, large signal‐to‐background ratio (SBR), and high maximum imaging depth to depth resolution ratio. Herein, NIR‐II conjugated polymer nanoparticle (CP NP) assisted ORPAMI is reported for pinpointing cerebral and tumor vasculatures. The CP NPs exhibit a large extinction coefficient of 48.1 L g?1 at the absorption maximum of 1161 nm, with an ultrahigh PA sensitivity up to 2 µg mL?1. 3D ORPAMI of wide‐field mice ear allows clear visualization of regular vasculatures with a resolution of 19.2 µm and an SBR of 29.3 dB at the maximal imaging depth of 539 µm. The margin of ear tumor composed of torsional dense vessels among surrounding normal regular vessels can be clearly delineated via 3D angiography. In addition, 3D whole‐cortex cerebral vasculatures with large imaging area (48 mm2), good resolution (25.4 µm), and high SBR (22.3 dB) at a depth up to 1001 µm are clearly resolved through the intact skull. These results are superior to the recently reported 3D NIR‐II fluorescence confocal vascular imaging, which opens up new opportunities for NIR‐II CP‐NP‐assisted ORPAMI in various biomedical applications.  相似文献   

20.
We have built a video-rate confocal scanning laser microscope for reflectance imaging of human skin and oral mucosa in vivo. Design and imaging parameters were determined for optimum resolution and contrast. Mechanical skin-holding fixtures and oral tissue clamps were made for stable objective lens-to-tissue contact such that gross tissue motion relative to the microscope was minimized. Confocal imaging was possible to maximum depths of 350 mum in human skin and 450 mum in oral mucosa, with measured lateral resolution of 0.5-1 mum and axial resolution (section thickness) of 3-5 mum at the 1064-nm wavelength. This resolution is comparable with that of conventional microscopy of excised biopsies (histology). Normal and abnormal tissue morphology and dynamic processes were observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号