首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper examines the macroeconomic rebound effect for the UK economy arising from energy efficiency policies 2000–2010 using the macroeconomic model, MDM-E3. The literature distinguishes between three types of rebound effect: direct, indirect and economy-wide. The macroeconomic rebound effect considered here is the combination of the indirect and economy-wide effects. Policies for the domestic, business, commercial and public, and transport sectors of the economy are analysed for 2000–2010. Overall, the policies lead to a saving of about 8% of the energy, which would otherwise have been used and a reduction in CO2 emissions of 10% (or 14 mtC) by 2010. There are also favourable macroeconomic effects: lower inflation and higher growth. We find that the macroeconomic rebound effect arising from UK energy efficiency policies for the period 2000–2010 is around 11% by 2010, averaged across sectors of the economy. When this is added to the (assumed) direct rebound effect of around 15%, this gives a total rebound effect of around 26% arising from these policies. Thus, the findings of the study support the argument that energy efficiency improvements for both consumers and producers, stimulated by policy incentives, will lead to significant reductions in energy demand and hence in greenhouse gas emissions.  相似文献   

2.
The pollution/energy leakage literature raises the concern that policies implemented in one country, such as a carbon tax or tight energy restrictions, might simply result in the reallocation of energy use to other countries. This paper addresses these concerns in the context of policies to increase energy efficiency, rather than direct action to reduce energy use. Using a global CGE simulation model, we extend the analyses of ‘economy-wide’ rebound from the national focus of previous studies to incorporate international spill-over effects from trade in goods and services. Our focus is to investigate whether these effects have the potential to increase or reduce the overall (global) rebound of local energy efficiency improvements. In the case we consider, increased energy efficiency in German production generates changes in comparative advantage that produce negative leakage effects, thereby actually rendering global rebound less than national rebound.  相似文献   

3.
The objective of this paper is to analyse the rebound effect from increased efficiency in industrial energy use in Sweden. Energy efficiency improvements can have significant micro- and macroeconomic effects that hamper the positive effect on real energy savings. To assess the size of the overall rebound effect in the Swedish economy, we apply a computable general equilibrium model. The results show that the economy-wide rebound effect depends on a number of factors, e.g. the extent of the energy efficiency improvement, how the labour market is modelled as well as whether the increase in energy efficiency is combined with a cost or not. We find that the rebound effect following a five per cent increase in energy efficiency in the Swedish industry lies in the 40–70 per cent range. When energy efficiency is only improved in energy-intensive production, the rebound effect becomes even higher. These findings are in line with the results in the literature.  相似文献   

4.
This article attempts to summarise the complex, wide ranging and unresolved debate within the economics literature on the possibility of decoupling economic growth from energy use. It explores the difference between neo-classical and ecological economic worldviews and highlights how the ecological economic approach attempts to ground its analysis within the physical limits implied by the laws of thermodynamics. Once these laws are accounted for, the possibility of decoupling economic growth from energy use seems more limited than neo-classical economics implies. Analysis of empirical evidence also demonstrates that observed improvements in GDP/energy use ratios in the USA are better explained by shifts towards higher quality fuels than by improvements in the energy efficiency of technologies. This implies a need to focus on decarbonising energy supply. Furthermore, where energy-efficiency improvements are attempted, they must be considered within the context of a possible rebound effect, which implies that net economy-wide energy savings from energy-efficiency improvements may not be as large as the energy saved directly from the efficiency improvement itself. Both decarbonising energy supply and improving energy efficiency require the rapid development and deployment of new and existing low-carbon technologies. This review therefore concludes by briefly outlining areas of economic thought that have emerged as a result of engagement between economists and experts from other disciplines. They include ecological, evolutionary and institutional economics, all of which can make policy-relevant contributions to achieving a transition to a low-carbon economy.  相似文献   

5.
Rebound effect is defined as the lost part of ceteris paribus energy savings from improvements on energy efficiency. In this paper, we investigate economy-wide energy rebound effects by developing a computable general equilibrium (CGE) model for Georgia, USA. The model adopts a highly disaggregated sector profile and highlights the substitution possibilities between different energy sources in the production structure. These two features allow us to better characterize the change in energy use in face of an efficiency shock, and to explore in detail how a sector-level shock propagates throughout the economic structure to generate aggregate impacts. We find that with economy-wide energy efficiency improvement on the production side, economy-wide rebound is moderate. Energy price levels fall very slightly, yet sectors respond to these changing prices quite differently in terms of local production and demand. Energy efficiency improvements in particular sectors (epicenters) induce quite different economy-wide impacts. In general, we expect large rebound if the epicenter sector is an energy production sector, a direct upstream/downstream sector of energy production sectors, a transportation sector or a sector with high production elasticity. Our analysis offers valuable insights for policy makers aiming to achieve energy conservation through increasing energy efficiency.  相似文献   

6.
The rebound effect measures the fraction of an energy efficiency improvement that is offset by increased energy consumption. A rebound effect can arise at both the microeconomic level and the macroeconomic level. The macroeconomic rebound effect measures the effect of an increase in energy efficiency on overall energy demand after markets adjust and re-equilibrate. At the macroeconomic level, energy efficiency gains can increase energy consumption through two channels: the macroeconomic price effect and the macroeconomic growth effect. In this paper, we econometrically estimate the macroeconomic energy rebound effect in China. Our results show that there is a statistically significant macroeconomic price rebound effect for China, for each province, and for the short run, intermediate run, and the long run. We also find some evidence of a macroeconomic growth rebound in the short run and the intermediate run for some years either nation-wide or for some provinces in China; moreover, for some years and some provinces, we cannot reject backfire. The rebound effect is an important phenomenon that the government of China should not neglect when making energy policy, as it affects how improvements in energy efficiency translate into changes in energy consumption.  相似文献   

7.
In spite of having been first introduced in the last half of the ninetieth century, the debate about the possible rebound effects from energy efficiency improvements is still an open question in the economic literature. This paper contributes to the existing research on this issue proposing an unbiased measure for economy-wide rebound effects. The novelty of this economy-wide rebound measure stems from the fact that not only actual energy savings but also potential energy savings are quantified under general equilibrium conditions. Our findings indicate that the use of engineering savings instead of general equilibrium potential savings downward biases economy-wide rebound effects and upward-biases backfire effects. The discrepancies between the traditional indicator and our proposed measure are analysed in the context of the Spanish economy.  相似文献   

8.
Beginning with William Stanley Jevons in 1865, a number of authors have claimed that economically justified energy-efficiency improvements will increase rather than reduce energy consumption. ‘Jevons Paradox’ is extremely difficult to test empirically, but could have profound implications for energy and climate policy. This paper summarises and critiques the arguments and evidence that have been cited in support of Jevons’ Paradox, focusing in particular on the work of Len Brookes and Harry Saunders. It identifies some empirical and theoretical weaknesses in these arguments, highlights the questions they raise for economic orthodoxy and points to some interesting parallels between these arguments and those used by the ‘biophysical’ school of ecological economics. While the evidence in favour of ‘Jevons Paradox’ is far from conclusive, it does suggest that economy-wide rebound effects are larger than is conventionally assumed and that energy plays a more important role in driving productivity improvements and economic growth than is conventionally assumed.  相似文献   

9.
Estimating the magnitude of China's economy-wide rebound effect has attracted much attention in recent years. Most existing studies measure the rebound effect through the additional energy consumption from technological progress. However, in general technological progress is not equivalent to energy efficiency improvement. Consequently, their estimation may be misleading. To overcome the limitation, this paper develops an alternative approach for estimating energy rebound effect. Based on the proposed approach, China's economy-wide energy rebound effect is revisited. The empirical result shows that during the period 1981–2011 the rebound effects in China are between 30% and 40%, with an average value of 34.3%.  相似文献   

10.
Carbon/energy taxes and energy efficiency improvement are studied well in the recent years for their potential adverse impacts on economy, especially for lost production and international competitiveness, and rebound effects. However, little attention has been paid to investigate them jointly, which can not only prevent fall of energy services cost and thereby rebound effect but reduce the associated macroeconomic costs. This study thus employs a 20 sector CGE model to explore separately the impacts of carbon tax and its coordinated implementation with energy efficiency improvement on the Pakistan economy. The country underwent enormous pressure of energy security issues as well as climate change fallouts in the last couple of years and can be regarded as a suitable candidate for energy/environmental conservation policies to be considered at a broader context with more concrete efforts. The simulation results show that the impact of carbon tax on GDP is negative but resulting reductions in pollutant emissions are relatively high. Moreover, the GDP is expected to grow comparatively positive when analyzed with improvements in energy efficiency, with even higher decline in energy consumption demand and so emissions. This simultaneous economic and environmental improvement would thus have positive implications regarding sustainable development of the country.  相似文献   

11.
This paper explores the rebound effect of different energy types in China based on a static computable general equilibrium model. A one-off 5% energy efficiency improvement is imposed on five different types of energy, respectively, in all the 135 production sectors in China. The rebound effect is measured both on the production level and on the economy-wide level for each type of energy. The results show that improving energy efficiency of using electricity has the largest positive impact on GDP among the five energy types. Inter-fuel substitutability does not affect the macroeconomic results significantly, but long-run impact is usually greater than the short-run impact. For the exports-oriented sectors, those that are capital-intensive get big negative shock in the short run while those that are labour-intensive get hurt in the long run. There is no “backfire” effect; however, improving efficiency of using electricity can cause negative rebound, which implies that improving the energy efficiency of using electricity might be a good policy choice under China's current energy structure. In general, macro-level rebound is larger than production-level rebound. Primary energy goods show larger rebound effect than secondary energy goods. In addition, the paper points out that the policy makers in China should look at the rebound effect in the long term rather than in the short term. The energy efficiency policy would be a good and effective policy choice for energy conservation in China when it still has small inter-fuel substitution.  相似文献   

12.
Hydrogen is currently receiving attention as a possible cross-sectoral energy carrier with the potential to enable emission reductions in several sectors, including hard-to-abate sectors. In this work, a techno-economic optimization model is used to evaluate the competitiveness of time-shifting of electricity generation using electrolyzers, hydrogen storage and gas turbines fueled with hydrogen as part of the transition from the current electricity system to future electricity systems in Years 2030, 2040 and 2050. The model incorporates an emissions cap to ensure a gradual decline in carbon dioxide (CO2) levels, targeting near-zero CO2 emissions by Year 2050, and this includes 15 European countries.The results show that hydrogen gas turbines have an important role to play in shifting electricity generation and providing capacity when carbon emissions are constrained to very low levels in Year 2050. The level of competitiveness is, however, considerably lower in energy systems that still allow significant levels of CO2 emissions, e.g., in Year 2030. For Years 2040 and 2050, the results indicate investments mainly in gas turbines that are partly fueled with hydrogen, with 30–77 vol.-% hydrogen in biogas, although some investments in exclusively hydrogen-fueled gas turbines are also envisioned. Both open cycle and combined cycle gas turbines (CCGT) receive investments, and the operational patterns show that also CCGTs have a frequent cyclical operation, whereby most of the start-stop cycles are less than 20 h in duration.  相似文献   

13.
This paper contributes to the understanding of the determinants of energy audits and to the role of energy audits in promoting energy-efficiency measures in SMEs. It benefits from the data collected within the European Investment Bank Surveys in 2017 and 2018, involving information about energy audits and energy-efficiency investments of some 12,500 signatures from EU28 Member States per year. Our analysis suggests that the decision of firms to conduct an energy audit is driven mainly by their characteristics, such as size, productivity, capital intensity, sector affiliation, and national policies regarding the transposition of relevant EU legislation and policy incentives. Furthermore, our findings indicate that energy audits besides being the first step in realizing energy-efficiency opportunities, most likely lead to the adoption of their recommendations. This is consistent with the view that energy audit is a useful tool in overcoming the information barriers and facilitating investments in energy-efficiency measures (EEMs). In fact, their information is more crucial for small firms and for investments in support processes such as lighting, wall insulation etc. than in production processes such as replacement of machinery and equipment. We also find that the likelihood of investments in EEMs, especially after an energy audit, is higher when combined with external financing and for innovative firms.  相似文献   

14.
In a recent article, Shao et al. (2014) formulate economy-wide energy rebound effect based on the IPAT equation and employ latent variable approach for estimation. We argue that their formulation should be revised, and advocate the distinguishment between energy efficiency improvement and technological progress for estimating energy rebound effect. An application to estimate China's energy rebound effect over 1981–2011 is also provided.  相似文献   

15.
As a response to the twin challenges of climate change mitigation and energy security, the UK government has set a groundbreaking target of reducing the UK’s economy-wide carbon emissions by 80% from 1990 levels by 2050. A second key UK energy policy is to increase the share of final energy consumption from renewables sources to 15% by 2020, as part of the wider EU Renewable Directive. The UK’s principle mechanisms to meet this renewable target are the Renewable Obligation (RO) in the electricity sector, the Renewable Transport Fuel Obligation (RTFO), and most recently the Renewable Heat Programme (RHP) for buildings. This study quantifies a range of policies, energy pathways, and sectoral trade-offs when combining mid- and long-term UK renewables and CO2 reduction policies. Stringent renewable policies are the binding constraints through 2020. Furthermore, the interactions between RO, RTFO, and RHP policies drive trade-offs between low carbon electricity, bio-fuels, high efficiency natural gas, and demand reductions as well as resulting 2020 welfare costs. In the longer term, CO2 reduction constraints drive the costs and characteristics of the UK energy system through 2050.  相似文献   

16.
This article examines the future role of energy efficiency as a resource in the Western US and Canada, as envisioned in the most recent resource plans issued by 16 utilities, representing about 60% of the region’s load. Utility and third-party-administered energy-efficiency programs proposed by 15 utilities over a 10-year horizon would save almost 19,000 GWh annually, about 5.2% of forecast load. There are clear regional trends in the aggressiveness of proposed energy savings. California’s investor-owned utilities (IOUs) had the most aggressive savings targets, followed by IOUs in the Pacific Northwest, and the lowest savings were proposed by utilities in Inland West states and by two public utilities on the West Coast. The adoption of multiple, aggressive policies targeting energy efficiency and climate change appears to produce sizeable energy-efficiency commitments. Certain specific policies, such as mandated energy savings goals for California’s IOUs and energy-efficiency provisions in Nevada’s Renewable Portfolio Standard, had a direct impact on the level of energy savings included in the resource plans. Other policies, such as revenue decoupling and shareholder incentives and voluntary or legislatively mandated greenhouse gas emission reduction policies, may have also impacted utilities’ energy-efficiency commitments, though the effects of these policies are not easily measured. Despite progress among the utilities in our sample, more aggressive energy-efficiency strategies that include high-efficiency standards for additional appliances and equipment, tighter building codes for new construction and renovation, as well as more comprehensive ratepayer-funded energy-efficiency programs are likely to be necessary to achieve a region-wide goal of meeting 20% of electricity demand with efficiency in 2020.
Charles GoldmanEmail:
  相似文献   

17.
The paper presents the results of an ex-ante evaluation of the economy-wide benefits that may be achieved through the implementation of the 20-year Energy Efficiency Action Plan (EEAP) in Thailand. The objective of the EEAP is to reduce energy intensity by 25 % in 2030 compared to 2010. This is to be reached by reducing the projected energy consumption by 20 % or 38 Mtoe until 2030. We have specified an analytical framework, which allows for a calculation of the overall energy cost savings, energy import cost reductions and reduced CO2 emissions. Moreover, we calculated the induced energy efficiency investments, employment effects and impacts on governmental budget. The evaluation shows that an effective implementation of the plan may lead to a reduction in energy expenditure of 37.7 billion EUR by 2030. Moreover, the EEAP-induced energy savings will significantly reduce the greenhouse gas emissions as well as Thailand’s energy import costs and generate private investment in energy efficiency of about 5 billion EUR annually in 2030, which in turn may lead to about 300,000 new jobs. The size of the net impact of the plan on Thailand’s governmental budget is uncertain due to positive and negative effects on corporate and income tax revenues, expenses for unemployment benefits, governmental energy consumption, expenses for energy subsidies and energy tax income.  相似文献   

18.
Households consume a large amount of indirect energy through the consumption of goods and services. This fact makes the quantitative analysis of indirect household energy consumption the foundation of energy policy design. This paper improves the compilation method of energy input–output tables, and establishes a sequence of energy input–output tables for China. Based on these tables, the indirect energy consumption of both rural and urban households is calculated. Then, with economic data for the year of 2005, the adjusted input–output price model is applied to evaluate how the alternative energy policies impact production prices, consumption prices, and real income of rural and urban households through the mechanism of indirect energy consumption by using electricity as an example. This research has practical implications for Chinese economy. The integration of energy-efficiency improvements and energy prices increase serves as a means to achieve both economic and energy conservation goals, and may also have a positive effect on residents’ real income and a minimal effect on production prices.  相似文献   

19.
What are the feasibility, costs, and environmental implications of large-scale bioenegry? We investigate this question by developing a detailed representation of bioenergy in a global economy-wide model. We develop a scenario with a global carbon dioxide price, applied to all anthropogenic emissions except those from land use change, that rises from $25 per metric ton in 2015 to $99 in 2050. This creates market conditions favorable to biomass energy, resulting in global non-traditional bioenergy production of ~ 150 exajoules (EJ) in 2050. By comparison, in 2010, global energy production was primarily from coal (138 EJ), oil (171 EJ), and gas (106 EJ). With this policy, 2050 emissions are 42% less in our Base Policy case than our Reference case, although extending the scope of the carbon price to include emissions from land use change would reduce 2050 emissions by 52% relative to the same baseline. Our results from various policy scenarios show that lignocellulosic (LC) ethanol may become the major form of bioenergy, if its production costs fall by amounts predicted in a recent survey and ethanol blending constraints disappear by 2030; however, if its costs remain higher than expected or the ethanol blend wall continues to bind, bioelectricity and bioheat may prevail. Higher LC ethanol costs may also result in the expanded production of first-generation biofuels (ethanol from sugarcane and corn) so that they remain in the fuel mix through 2050. Deforestation occurs if emissions from land use change are not priced, although the availability of biomass residues and improvements in crop yields and conversion efficiencies mitigate pressure on land markets. As regions are linked via international agricultural markets, irrespective of the location of bioenergy production, natural forest decreases are largest in regions with the lowest barriers to deforestation. In 2050, the combination of carbon price and bioenergy production increases food prices by 3.2%–5.2%, with bioenergy accounting for 1.3%–3.5%.  相似文献   

20.
Many energy-related investments are made without a clear financial understanding of their values, risks, and volatilities. In the face of this uncertainty, the investor—such as a building owner or an energy service company—will often choose to implement only the most certain and thus limited energy-efficiency measures. Conversely, commodities traders and other sophisticated investors accustomed to evaluating investments on a value, risk, and volatility basis often overlook energy-efficiency investments because risk and volatility information are not provided. Fortunately, energy-efficiency investments easily lend themselves to such analysis using tools similar to those applied to supply side risk management. Accurate and robust analysis demands a high level of understanding of the physical aspects of energy-efficiency, which enables the translation of physical performance data into the language of investment. With a risk management analysis framework in place, the two groups—energy-efficiency experts and investment decision-makers—can exchange the information they need to expand investment in demand-side energy projects. In this article, we first present the case for financial risk analysis in energy efficiency in the buildings sector. We then describe techniques and examples of how to identify, quantify, and manage risk. Finally, we describe emerging market-based opportunities in risk management for energy efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号