首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in the optical, structural, dielectric properties and surface morphology of a polypropylene/TiO2 composite due to swift heavy ion irradiation were studied by means of UV–visible spectroscopy, X-ray diffraction, impedance gain phase analyzer and atomic force microscopy. Samples were irradiated with 140 MeV Ag11+ ions at fluences of 1 × 1011 and 5 × 1012 ions/cm2. UV–visible absorption analysis reveals a decrease in optical direct band gap from 2.62 to 2.42 eV after a fluence of 5 × 1012 ions/cm2. X-ray diffractograms show an increase in crystallinity of the composite due to irradiation. The dielectric constants obey the Universal law given by ε α f n−1, where n varies from 0.38 to 0.91. The dielectric constant and loss are observed to change significantly due to irradiation. Cole–cole diagrams have shown the frequency dependence of the complex impedance at different fluences. The average surface roughness of the composite decreases upon irradiation.  相似文献   

2.
The studies on the specimens manufactured from the templates cut out from the weld 4 of Kozloduy NPP Unit 1 reactor vessel have been conducted. The data on chemical composition of the weld metal have been obtained. Neutron fluence, mechanical properties, ductile to brittle transition temperature (DBTT) using mini Charpy samples have been determined. The phosphorus and copper content averaged over all templates is 0.046 and 0.1 wt.%, respectively. The fluence amounted up to 5×1018 n cm−2 within 15–18 fuel cycles, and about 5×1019 n cm−2 for the whole period of operation. These values agree well with calculated data. DBTT was determined after irradiation (Tk) to evaluate the vessel metal state at the present moment, then after heat treatment at the temperature of 475°C to simulate the vessel metal state after thermal annealing (Tan), and after heat treatment at 560°C to simulate the metal state in the initial state (Tk0). As a result of the tests the following values were obtained: Tk, +91.5°C; Tan, +63°C; and Tk0, 54°C. The values of Tk and Tan obtained by measurements were found to be considerably lower than those predicted in accordance with the conservative method accepted in Russia (177°C for Tk and 100°C for Tan). Thus, the obtained results allowed to make a conclusion that it is not necessary to anneal Kozloduy NPP Unit 1 reactor vessel for the second time. The fractographic and electron-microscopic research allowed to draw some conclusions on the embrittlement mechanism.  相似文献   

3.
M.  V.   《Nuclear Engineering and Design》2008,238(10):2811-2814
Experiences with an advanced spent nuclear fuel management in Slovakia are presented in this paper. The evaluation and monitoring procedures are based on practices at the Slovak wet interim spent fuel storage facility in NPP Jaslovské Bohunice. Since 1999, leak testing of WWER-440 fuel assemblies were completed using a special leak tightness detection system developed by Framatome-anp, “Sipping in Pool”. This system utilized external heating for the precise defects determination.Optimal methods for spent fuel disposal and monitoring were designed. A new conservative factor for specifying of spent fuel leak tightness is introduced in the paper. Limit values of leak tightness were established from the combination of SCALE4.4a (ORIGEN-ARP) calculations and measurements from the “Sipping in Pool” system. These limit values are: limiting fuel cladding leak tightness coefficient for tight fuel assembly – kFCT(T) = 3 × 10−10, limiting fuel cladding leak tightness coefficient for fuel assembly with leakage – kFCT(L) = 8 × 10−7.  相似文献   

4.
5.
JR curves of the low alloy steel 20 MnMoNi 5 5 with two different sulphur contents (0.003 and 0.011 wt.%) were determined at 240°C in oxygen-containing high temperature water as well as in air. The tests were performed by the single-specimen unloading compliance technique at load line displacement rates from 1 × 10−4 down to 1 × 10−6 mm s−1 on 20% side-grooved 2T CT specimens in an autoclave testing facility at an oxygen content of 8 ppm and a pressure of 7 MPa under quasi-stagnant flow conditions.In the case of testing in high temperature water, remarkably lower JR curves than in air at the same load line displacement rate (1 × 10−4 mm s−1) were obtained. A decrease in the load line displacement rate as well as an increase in the sulphur content of the steel caused a reduction of the JR curves. At the fastest load line displacement rate a stretch zone could be detected fractographically on the specimens tested in air and in high temperature water and consequently Ji could be determined. When testing in high temperature water, the Ji value of the higher sulphur material type decreases from 45 N mm−1 in air to 3 N mm−1, much more than that of the optimized material type from 51 N mm−1 in air to 20 N mm−1 at 1 × 10−4 mm s−1.  相似文献   

6.
The reactivity feedback coefficients of a material test research reactor fueled with high-density U3Si2 dispersion fuels were calculated. For this purpose, the low-density LEU fuel of an MTR was replaced with high-density U3Si2 LEU fuels currently being developed under the RERTR program. Calculations were carried out to find the fuel temperature reactivity coefficient, moderator temperature reactivity coefficient and moderator density reactivity coefficient. Nuclear reactor analysis codes including WIMS-D4 and CITATION were employed to carry out these calculations. It is observed that the average values of fuel temperature reactivity feedback coefficient, moderator temperature reactivity coefficient and moderator density reactivity coefficient from 20 °C to 100 °C, at the beginning of life, followed the relationships (in units of Δk/k × 10−5 K−1) −2.116 − 0.118 ρU, 0.713 − 37.309/ρU and −12.765 − 34.309/ρU, respectively for 4.0 ≤ ρU (g/cm3) ≤ 6.0.  相似文献   

7.
We performed corrosion tests of 1000 h each on approximately 20 types of structural steels (austenitic, ferritic and martensitic) in convection loops with flowing Pb–Bi at 500, 450 and 400 °C and a temperature gradient of 100 °C. These experiments were performed in liquid Pb–Bi with different oxygen concentrations (from approximately 1 × 10−6 to 2 × 10−5 wt.%) to ascertain at what oxygen concentration and up to what temperature the oxygen technology can create protective oxide or spinel layers to reduce or prevent corrosion. The results showed that the structural materials contemplated for building an ADS system, including 9% Cr–1% Mo (W) martensitic steels and similar steels with a higher Si content (2–3%), can be used with their surface unpassivated at up to 450 °C and suffer only minimal corrosion (up to 5 μm/year). At higher temperatures, their surface must be passivated prior to and regularly during the operation; however, no technology to perform such passivation in the presence of Pb–Bi is known that this time. In addition, we measured the impact of various alloying elements, such as Fe, Cr, Ni, Mn, Si, Al and Mo, on the corrosion of such steels and searched for potential ways to passivate their surface or create protective oxide or spinel layers during operation by varying the amount of oxygen in liquid Pb–Bi.  相似文献   

8.
A new methodology for ductile fracture analysis based on the local approach of fracture, through constitutive relations that take into account void growth and damage, has been applied to three heats of A 508 Cl 3 steel with different inclusion contents in the region of 10−3–10−4. The ductility of the three heats is well predicted by the ductile fracture model through its parameter f0: the initial volume fraction of voids. The model, first calibrated with the simple notched tension test, gives a good prediction of crack initiation and growth in a precracked specimen. Finally the statistical aspects in ductile fracture are briefly discussed.  相似文献   

9.
Ion irradiation can be used to induce partial crystallization in metallic glasses to improve their surface properties. We investigated the microstructural changes in ribbon Zr55Cu30Al10Ni5 metallic glass after 1 MeV Cu-ion irradiation at room temperature, to a fluence of 1.0 × 1016 cm−2. In contrast to a recent report by others that there was no irradiation induced crystallization in the same alloy [S. Nagata, S. Higashi, B. Tsuchiya, K. Toh, T. Shikama, K. Takahiro, K. Ozaki, K. Kawatusra, S. Yamamoto, A. Inouye, Nucl. Instr. and Meth. B 257 (2007) 420], we have observed nanocrystals in the as-irradiated samples. Two groups of nanocrystals, one with diameters of 5–10 nm and another with diameters of 50–100 nm are observed by using high resolution transmission electron microscopy. Experimentally measured planar spacings (d-values) agree with the expectations for Cu10Zr7, NiZr2 and CuZr2 phases. We further discussed the possibility to form a substitutional intermetallic (NixCu1−x)Zr2 phase.  相似文献   

10.
In the frame of the ITER-like wall project, a new row of divertor tiles has been developed which consists of 96 bulk tungsten load-bearing septum replacement plates (LB-SRP). Exposed to the outer strike point for most ITER-relevant, high triangularity configurations, they shall be subject to high power loads (locally 10 MW/m2 and above). These conditions are demanding, particularly for an inertially cooled design as prescribed. The expected erosion rates are high as well as the risk of melting, especially with transients and repetitive ELM loads. The development is also a real challenge with respect to the inevitable excursions of the tungsten material through the so-called DBTT, ductile-to-brittle transition temperature.A lamella design has been selected to fulfil the requirements with respect to the thermo-mechanical and electromagnetic loads during disruptions (∂T/∂≤ 5 × 104 K/m vertically, induction rate of change ∂B/∂t ≤ 100 T/s, and Ihalo ≤ 18 kA/module). Care is taken to act on refractory metals solely with compressive forces to a large extent. The dedicated clamping concept is described. Results of a test exposure to an electron beam around 70 MJ/m2 substantiate the resort to ‘high temperature’ materials like – among others – high-grade Nimonic® alloys, molybdenum or ceramic coatings.  相似文献   

11.
This study shows that metallic uranium will cleanly dissolve in carbonate-peroxide solution without generation of hydrogen gas or uranium hydride. Metallic uranium shot, 0.5–1 mm diameter, was reacted with ammonium carbonate–hydrogen peroxide solutions ranging in concentration from 0.13 M to 1.0 M carbonate and 0.50 M to 2.0 M peroxide. The dissolution rate was calculated from the reduction in bead mass, and independently by uranium analysis of the solution. The calculated dissolution rate ranged from about 4 × 10−3 to 8 × 10−3 mm/h, dependent primarily on the peroxide concentration. Hydrogen analysis of the etched beads showed that no detectable hydrogen was introduced into the uranium metal by the etching process.  相似文献   

12.
The ratios of E2 transition rates, i.e., B(E2; Ii − If)/B(E2; Ii − If) were computed for gamma to ground state band transitions in 192Os and 192Pt. The reduced transition probabilities for the E2 transitions evaluated on the basis of Interacting Boson Approximation (IBA-I) model and those measured experimentally are compared. The SU(3) symmetry of IBA-I is not strictly obeyed by the nuclei in which T(E2; Ii − If) transitions are observed, i.e., the symmetry SU(3) is broken. The percentage sum coincidence corrections are applied to marginalise contributions from crossover transitions and the intensities of affected transitions are found to agree fairly well with earlier sum peak method applications to the decay of 192Ir.  相似文献   

13.
Fluid-to-fluid modeling of critical heat flux (CHF) is to simulate the CHF behaviors for water by employing low cost modeling fluid, and the flow scaling factor is the key to apply the technique to fuel bundles. The CHF experiments in 4×4 rod bundles have been carried out in Freon-12 loop in equivalent nuclear reactor water conditions (P=10.0–16.0 MPa, G=488.0–2100.0 kg/m2 s, Xcr=−0.20–0.30). The models in fluid-to-fluid modeling of CHF is verified by the CHF data for Freon-12 obtained in the experiment and the CHF correlation for water obtained by Nuclear Power Institute of China (NPIC) in the same 4×4 rod bundles. It has been found that the S.Y. Ahmad Compensation Distortion model, the Lu Zhongqi model, the Groeneveld model and Stevens–Kirby model overpredict the bundles CHF values for water. Then an empirical correlation of flow scaling factor is proposed. Comparison of the CHF data in two kinds of test sections for Freon-12, in which the distance of the last grid away the end of heated length is different, shows that the spacer grid, which is located at 20 mm away from the end of the heated length, has evidently influenced on the CHF value in the 4×4 rod bundles for Freon-12. This is different from that for water, and the need for further work is required.  相似文献   

14.
The use of reactive metals and their alloys (e.g., Ni–Cr–Mo–W–Fe and Fe–Cr–Ni alloys) for isolating high level nuclear waste (HLNW) from the biosphere relies upon a continuing state of kinetic passivity of the metal surface. Without this state, which is due to the formation and continued existence of a ‘passivating’ oxide film, the alloy would react rapidly with components of the ambient environment (oxygen, water) and the structural integrity of the container would be compromised. The stability of the barrier oxide layers of bilayer passive films that form on metal and alloy surfaces, when in contact with oxidizing aqueous environments, is explored within the framework of the point defect model (PDM) using phase-space analysis (PSA), in which the rate of growth of the barrier layer into the metal, (dL+/dt), and the barrier layer dissolution rate, (dL/dt), are plotted simultaneously against the barrier layer thickness, assuming that both processes are irreversible. A point of intersection of dL/dt with dL+/dt indicates the existence of a metastable barrier layer with a steady state thickness that is greater than zero. If dL/dt > (dL+/dt)L=0, where the latter quantity is the barrier layer growth rate at zero barrier layer thickness, the barrier layer cannot exist, even as a metastable phase, as the resulting thickness would be negative. In any event, phase space analysis of the PDM permits specification of the conditions over which reactive metals will remain passive in contact with aqueous systems and hence of the conditions that must be met for the viable use of reactive metals and alloys for the isolation of HLNW.  相似文献   

15.
The Fusion Advanced Studies Torus (FAST) conceptual study has been proposed [A. Pizzuto on behalf of the Italian Association, The Fusion Advanced Studies Torus (FAST): a proposal for an ITER Satellite facility in support of the development of fusion energy, in: Proceedings of 22nd IAEA Fusion Energy Conference, Geneva, Switzerland, October 13–18, 2008; Nucl. Fusion, submitted for publication] as possible European ITER Satellite facility with the aim of preparing ITER operation scenarios and helping DEMO design and R&D. Insights into ITER regimes of operation in deuterium plasmas can be obtained from investigations of non linear dynamics that are relevant for the understanding of alpha particle behaviours in burning plasmas by using fast ions accelerated by heating and current drive systems.FAST equilibrium configurations have been designed in order to reproduce those of ITER with scaled plasma current, but still suitable to fulfil plasma conditions for studying burning plasma physics issues in an integrated framework. In this paper we report the plasma scenarios that can be studied on FAST, with emphasis on the aspect of its flexibility in terms of both performance and physics that can be investigated. All plasma equilibria satisfy the following constraints: (a) minimum distance of 3 energy e-folding length (assumed to be 1 cm on the equatorial plane) between plasma and first wall to avoid interaction between plasma and main chamber; (b) maximum current density in the poloidal field coils, transiently, up to around 30 MA/m2. The discharge duration is always limited by the heating of the toroidal field coils that are inertially cooled by helium gas at 30 K. The location of the poloidal field coils has been optimized in order to: minimize the magnetic energy; produce enough magnetic flux (up to 35 Wb stored) for the formation and sustainment of each scenario; produce a good field null at the plasma break-down (BP/BT < 2 × 10−4 at low field, i.e. BT = 4 T and ET = 2 V/m for at least 40 ms).Plasma position and shape control studies will also be presented. The optimization of the passive shell position slows the vertical stability growth time down to 100 ms.  相似文献   

16.
The outflow of high pressure liquid (in particular, water) to the atmosphere from a closed tube (of length a few metres and diameter more than a few centimetres) because of sudden destruction of one bottom is theoretically investigated. Evaporation takes places on the nucleus bubbles. The number of nuclei depends on the quality of the liquid or its purification. The process involves flashing evaporation of the liquid.There are two rarefaction waves at the initial stage. The velocity of the first wave (elastic forerunner) is sound speed in the one phase liquid and equals about 1000 m s−1. After the elastic forerunner the liquid becomes superheated because the pressure drops and evaporation begins.The velocity of the second rarefaction wave is about 1–10 ms s−1. There is intensive bubbly evaporation on and after the second wave. Intensity of the outflow is determined by the intensity of evaporation on the interface of the bubbles and by intensity of fragmentation of the bubbles because of their relative slip velocity in the liquid (0.1–1 m s−1). The fragmentation of the bubbles significantly intensifies the evaporation because of augmentation of the bubbly interface.The degree of non-equilibrium or superheating behind the forerunner in water grows with the increasing initial temperature T0. For T0<530−540 K this superheating is negligible and the process may be described by an equilibrium scheme. For T0 above 0.95Tcr≈605 K homogeneous nucleation is possible.After forerunner reflection from the closed bottom, intense evaporation is initiated near the bottom. Then the equalization of the pressure along the tube occurs (quasi-static homobaric stage).There is good correlation with experimental data.  相似文献   

17.
Using fault tree techniques, a quantitative estimate is made to predict both the start-up availability and operational reliability of the core auxiliary cooling system (CACS) of an HTGR following the postulated, simultaneous occurrence of a design basis depressurization accident (DBDA) and the complete loss of main loop cooling (LOMLC). The effects of a postulated, concurrent loss of offsite power are considered as well. Several potential common mode failures are identified. The limited availability of data presents a problem to numerical evaluation and estimates of uncertainty are at best crude. To provide a basis for measure of this uncertainty, the fault trees were solved using, on a consistent basis, either ‘optimistic’ failure rates, ‘pessimistic’ failure rates, or mean values (the geometric mean).Generally, about 80% of the failure rate data was larger than the ‘optimistic’ value, while only 20% was larger than the ‘pessimistic’ value. Predicated on a variety of assumptions, many of which may be unduly pessimistic, the CACS unavailability following a postulated DBDA and LOMLC has been estimated to be between 4 × 10−7 and 3 × 10−5 for the 2000 MW (th) HTGR and between 5 × 15−7 and 5 × 10−5 for the 3000 MW (th) HTGR. At the end of 300 hr, the estimated probability that the CACS will not leave sufficient core cooling capacity varies between 9 × 10−5 and 4 × 10−2 for the smaller plant and 3 × 10−4 and 6 × 10−2 for the larger plant. If it is further postulated that offsite power is concurrently lost, then the estimated mean unavailability at start-up is 3 × 10−3 for the 2000 MW (th) plant. The estimated mean probability that the CACS of the smaller plant will not be available at start-up and not be operational after 300 hr is 8 × 10−2.  相似文献   

18.
Impact-loaded, precracked Charpy specimens often play a crucial role in irradiation surveillance programs for nuclear power plants. However, the small specimen size B = W = 10 mm limits the maximum value of cleavage fracture toughness Jc that can be measured under elastic—plastic conditions without loss of crack tip constraint. In this investigation, plane strain impact analyses provide detailed resolution of crack tip fields for impact-loaded specimens. Crack tip stress fields are characterized in terms of JQ trajectories and the toughness-scaling model which is applicable for a cleavage fracture mechanism. Results of the analyses suggest deformation limits at fracture in the form of b > MJc/σ0, where M approaches 25–30 for a strongly rate-sensitive material at impact velocities of 3–6 m s−1. Based on direct comparison of the static and dynamic J values computed using a domain integral formulation, a new proposal emerges for the transition time, the time after impact at which interial effects diminish sufficiently for simple evaluation of J using the plastic η factor approach.  相似文献   

19.
Local singularity of a signal includes a lot of important information. Wavelet transform can overcome the shortages of Fourier analysis, i.e., the weak localization in the local time- and frequency-domains. It has the capacity to detect the characteristic points of boiling curves. Based on the wavelet analysis theory of signal singularity detection, Critical Heat Flux (CHF) and Minimum Film Boiling Starting Point (qmin) of boiling curves can be detected by using the wavelet modulus maxima detection. Moreover, a genetic neural network (GNN) model for predicting CHF is set up in this paper. The database used in the analysis is from the 1960s, including 2365 data points which cover a range of pressure (P), from 100 to 1000 kPa, mass flow rate (G) from 40 to 500 kg m−2 s−1, inlet sub-cooling (ΔTsub) from 0 to 35 K, wall superheat (ΔTsat) from 10 to 500 K and heat flux (Q) from 20 to 8000 kW m−2. GNN mode has some advantages of its global optimal searching, quick convergence speed and solving non-linear problem. The methods of establishing the model and training of GNN are discussed particularly. The characteristic point predictions of boiling curve are investigated in detail by GNN. The results predicted by GNN have a good agreement with experimental data. At last, the main parametric trends of the CHF are analyzed by applying GNN. Simulation and analysis results show that the network model can effectively predict CHF.  相似文献   

20.
Hydrogen control is important in post-accident situations because of possibilities for containment rupture due to hydrogen deflagration or detonation. Post-accident hydrogen generation in BWR containments is analyzed as a function of engineered hydrogen control system, assumed either nitrogen inerting or air dilution. Fault tree analysis was applied to assess the failure probability per demand of each system. These failure rates were then combined with the probability of accidents producing various hydrogen generation rates to calculate the overall system hydrogen control probability. Results indicate that both systems render approximately the same overall hydrogen control failure rate (air dilution: 8.3 × 10−2−1.1 × 10−2; nitrogen inerting: 1.3 × 10−2−2 × 10−3). Drywell entries and unscheduled shutdowns were also analyzed to determine the impact on the total BWR accident risk as it relates to the decay heat removal system. Results indicate that inerting may increase the overall risk due to a possible increase in the number of unscheduled shutdowns due to a lessened operator ability to correct and identify ‘unidentified’ leakage from the primary coolant system. Further, possible benefits of inerting due to reduced torus corrosion and fire risk in containment appear to be dominated by the possible operations-related disadvantages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号