首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Composites Part A》2002,33(8):1033-1039
Poly(ether ether ketone) nanocomposites containing vapour-grown carbon nanofibres (CNF) were produced using standard polymer processing techniques. Evaluation of the mechanical composite properties revealed a linear increase in tensile stiffness and strength with nanofibre loading fractions up to 15 wt% while matrix ductility was maintained up to 10 wt%. Electron microscopy confirmed the homogeneous dispersion and alignment of nanofibres. An interpretation of the composite performance by short-fibre theory resulted in rather low intrinsic stiffness properties of the vapour-grown CNF. Differential scanning calorimetry showed that an interaction between matrix and the nanoscale filler could occur during processing. Such changes in polymer morphology due to the presence of a nanoscale filler need to be considered when evaluating the mechanical properties of such nanocomposites.  相似文献   

2.
合成了聚醚砜醚酮酮(PESEKK),研究了纯树脂的热、力学性能。制备了炭纤维和聚醚砜醚酮酮(炭纤维是标准T300)复合材料,着重研究了此新型复合材料的力学性能。结果表明,随着复合材料中PESEKK树脂质量比增加,T300CF/PESEKK复合材料的拉伸强度、弯曲强度、拉伸模量和弯曲模量逐渐增加。其中弯曲强度和弯曲模量增加的幅度比拉伸强度和拉伸模量增加的幅度更大。当PESEKK质量分数为60%左右时,复合材料的综合力学性能达到最佳值。因此聚醚砜醚酮酮可作为增强炭纤维力学性能的基体树脂。  相似文献   

3.
An electrospinning method was used to spin semi-crystalline poly(L-lactide) (PLLA) nanofibres. Processing parameter effects on the internal molecular structure of electrospun PLLA fibres were investigated by x-ray diffraction (XRD) and differential scanning calorimetry (DSC). Take-up velocity was found as a dominant parameter to induce a highly ordered molecular structure in the electrospun PLLA fibres compared to solution conductivity and polymer concentration, although these two parameters played an important role in controlling the fibre diameter. A collecting method of a single nanofibre by an electrospinning process was developed for the tensile tests to investigate structure-property relationships of the polymer nanofibres. The tensile test results indicated that higher take-up velocity caused higher tensile modulus and strength due to the ordered structure developed through the process.  相似文献   

4.
Relationships between phase morphology and mechanical deformation processes in various electrospun polymer nanocomposite nanofibres (PNCNFs) containing different types of one-, two-?and three-dimensional nanofiller have been investigated by transmission electron microscopy using in situ tensile techniques. From the study of the phase structure of electrospun PNCNFs, two morphological standard types are classified for the analysis of deformation mechanisms: the binary system (polymer matrix and nanofillers), and the ternary system (polymer matrix, nanofillers and nanopores on the fibres surface). According to these categories, deformation processes have been characterized, and different schematic models for these processes are proposed. The finding of importance in the present work is a brittle-to-ductile transition in polymer nanocomposite fibres during in situ tensile deformation processes. This unique feature in the deformation behaviour of electrospun PNCNFs provides an optimal balance of stiffness, strength and toughness for use as reinforcing elements in a polymer based composite of a new kind.  相似文献   

5.
Multi-walled carbon nanotubes (MWCNTs) were functionalized with a carboxyl group (-COOH) to achieve better interfacial adhesions with both phases of the poly(ether ether ketone) (PEEK) and liquid crystalline polymer (LCP) in their blend. These strong interfacial interactions among the functionalized MWCNTs, PEEK and LCP improved the mechanical properties of the polymer blend. Three different weight percentages (0.6%, 1.2% and 1.8%) of acid modified CNTs were used with PEEK-LCP blend, for the preparation of nanocomposites. In PEEK-LCP blend, the ratio of PEEK and LCP was maintained as 10:6 respectively. The tensile strength and modulus of the composites were improved by 51% and 73% respectively with the incorporation of only 1.2% of MWCNT-COOH as compared to the unfilled PEEK/LCP blend. Moreover, careful studies of the molecular interaction, morphological, dynamic mechanical and thermal properties confirmed that a better miscibility between PEEK and LCP had been constituted in the presence of MWCNT-COOH. Therefore, it was found that the functionalized MWCNTs not only played the traditional role as reinforcing filler, but also performed a novel role as a compatibilizer for the PEEK/LCP blends.  相似文献   

6.
以聚醚醚酮(PEEK)为基体树脂、碳纤维(CF)和氮化铝(AlN)为填料,通过模压成型的方法制备了抗静电耐热型CF-AlN/PEEK复合材料。采用高阻计、导热系数测定仪、热失重、差示扫描量热仪和SEM研究了CF-AlN/PEEK复合材料的抗静电性能、热性能、力学性能以及降温速率对复合材料性能的影响,并探讨了后期热处理对力学性能的影响。结果表明:当CF和AlN的质量分数均为10%时,CF-AlN/PEEK复合材料的性能较优,其表面电阻率达到108 Ω,比PEEK的表面电阻率提高了6个数量级;导热系数为0.418 W·(m·K)-1,初始分解温度高达573℃;拉伸强度提高了40.4%;降温速率越低,复合材料的熔点越高;后期热处理会影响CF-AlN/PEEK复合材料的力学性能,在270℃下热处理2 h,其拉伸强度可达146 MPa,表明在生产过程中,加工温度是影响复合材料性能的因素之一。   相似文献   

7.

The effect of the chemical composition on the morphology and microstructure of poly(ether ether ketone) (PEEK)/reduced graphene oxide (RGO) nanocomposite coatings is analyzed. RGO induced three main morphological features in the nanocomposites: (i) a large-scale co-continuous morphology related to nanosheets whose basal planes were mainly aligned with the coating surface, (ii) a dendritic morphology of PEEK domains, and (iii) irregular domains related to the deposition of PEEK particles wrapped by the nanosheets. The development of these morphological features was influenced by the RGO content, allowing the modification of the surface roughness. RGO also induced changes in the melting and non-isothermal crystallization of the polymeric matrix and promoted transcrystallinity in PEEK that, in turn, was a key factor in the development of the final microstructure. In addition, polymer chain mobility was observed to be hindered at high nanofiller concentrations, increasing the glass transition temperature, and diminishing the recrystallization of the polymeric matrix.

  相似文献   

8.
A nanocomposite with soluble high-performance poly(phthalazinone ether sulfone ketone) (PPESK) as matrix and multi-walled carbon nanotube buckypaper (MWCNT-BP) as reinforcement was fabricated by hot-press processing. The morphologies, dynamic and static mechanical behavior, thermal stability of the MWCNT-BP/PPESK composites were studied using scanning electron microscope (SEM), dynamic mechanical analyzer (DMA) and thermogravimetric analyzer (TGA). SEM microphotographs revealed a high impregnation degree of the MWCNT-BP/PPESK composites. Dynamic and static mechanical analysis revealed that the nanocomposites possessed high storage modulus, and good retention rate of mechanical strength even at 250 °C, which is mainly attributed to satisfied impregnation and strong interactions between MWCNT-BP and PPESK. Thermogravimetric analysis exhibited that the nanocomposites had excellent thermal stability. These investigations confirm that MWCNT-BP can be effectively used to manufacture high-loading CNT/PPESK composites with improved properties.  相似文献   

9.
Poly(ether ether ketone) (PEEK) is a high performance polymer that cannot usually be foamed reliably using conventional injection-moulding processes. Here, vapour-grown carbon nanofibres (CNFs) are introduced to stabilise the foaming process, and the resulting morphology of injection-moulded integral foams is investigated in detail. Different image analysis techniques revealed the positive effect of the nanofiller on the cellular structure. Electron microscopy confirmed a homogeneous dispersion of the nanofibres in the cellular PEEK cores. The mechanical properties of the foam injection-moulded samples, in bending, showed an increase in yield strength and elastic modulus with nanofibre loading fractions up to 15 wt%. Although the compressive properties of the foams were reduced as compared to the solid-polymer, the CNFs clearly offset this reduction in properties. Detailed differential scanning calorimetry (DSC) and dynamic mechanical analysis provide further evidence of an interaction between the matrix and the nanoscale filler.  相似文献   

10.
Poly ether ether ketone (PEEK)/multi-walled carbon nanotubes (MWNTs) nanocomposites were fabricated to characterize and understand the orientation and dispersion of carbon nanotubes (CNTs) in a polymer matrix. A focused-ion-beam (FIB) technique was used for milling the nanocomposite by a focused gallium ion beam, and the MWNTs were carefully observed. The PEEK preferentially disappeared when the Ga+ ion beam milled the composite, and MWNTs were exposed on the surface of composites. Using this method, it is very easy to estimate and directly evaluate the orientation of the MWNTs in the polymer matrix even though they are embedded in the polymer matrix. Transmission electron microscopy (TEM) was employed to characterize the detailed position of the nanotubes in the PEEK matrix.  相似文献   

11.
将热致液晶聚酯(VA)与聚醚醚酮(PEEK)共混后,通过熔融纺丝制备了热致液晶聚酯/聚醚醚酮复合纤维,并对复合纤维的热性能、聚集态结构、相态结构和力学性能进行了研究。结果表明,VA的加入能够降低PEEK纤维的玻璃化温度和冷结晶温度,同时PEEK的结晶温度也随着VA的加入而升高;VA的加入有利于提高PEEK的结晶性能,使得PEEK晶粒尺寸变大,晶面间距变小,晶体更加完善,晶区取向增强;随着VA添加量的增大,VA相逐渐由球状或椭球状向微纤状变化;随着喷丝头拉伸比的增大,VA相的长径比呈现先增大后减小的趋势;添加1%和2%的VA后,复合纤维的断裂强度有少许下降,而当VA的添加量增大到4%后,复合纤维的总拉伸倍数提高,并且断裂强度有一定的提升。  相似文献   

12.
A novel biodegradable polymer elastomer nanocomposite composing of poly(1,8-octanediol-citrate) (POC) polymer matrix and carbon nanotubes (CNTs) additive was successfully fabricated and systematically investigated using Fourier transform infrared (FT-IR), X-ray diffractometer (XRD), differential scanning calorimetry (DSC), tensile test, incubation and cytotoxicity tests. It was found that the addition of CNTs in POC elastomer did not result in any noticeable change in its chemical structure and the amorphous state. However, the tensile strength and elongation at break were greatly improved by the addition of CNTs in POC polymer matrix. It revealed that the swelling ratio and percentage of weight loss of POC/CNTs nanocomposite were lower, compared with the pure POC material. Moreover, the adsorption amount of bovine serum albumin (BSA) increased with an increase of the CNTs mass content in POC matrix revealing the enhanced hydrophilicity of POC/CNTs nanocomposites contributed by the carboxyl of the CNTs. Additionally, the cytotoxicity tests with L929 cell line revealed that the experimental POC/CNTs nanocomposites possessed good in vitro biocompatibility.  相似文献   

13.
The fatigue behaviour of carbon fibre/PEEK composite is compared with that of carbon/ epoxy material of similar construction, particularly in respect of the effect of hygrothermal conditioning treatments. Laminates of both materials were of 0/90 lay-up, and they were tested in repeated tension at 0° and at 45° to the major fibre axis. The superior toughness of the polyether ether ketone and its better adhesion to the carbon fibres results in composites of substantially greater toughness than that of the carbon/epoxy material, and this is reflected in the fatigue behaviour of the carbon fibre/PEEK. The tougher PEEK matrix inhibits the development of local fibre damage and fatigue crack growth, permitting a 0/90 composite with compliant XAS fibres to perform as well in fatigue as an epoxy laminate with stiffer HTS fibres. Hygrothermal treatments have no effect on the fatigue response of either material in the 0/90 orientation. The fatigue response of a cross-plied carbon/PEEK laminate in the ±45° orientation is much better than that of equivalent carbon/epoxy composites, again because the superior properties of the thermoplastic matrix.  相似文献   

14.
The effect of interleaving on the interlaminar fracture behaviour of unidirectional and woven-fabric fibre composites based upon continuous carbon fibres (CF) and poly(ether ether ketone) (PEEK) has been investigated over a wide range of temperature and crack speed. The fracture data obtained from mode I and mode II tests have been analysed using the time-temperature equivalence postulate and the results are discussed in terms of fracture micromechanisms. The insertion of a resin-rich layer between laminae was found to increase significantly the fracture resistance of the composites, whitout altering its dependence on crack speed.  相似文献   

15.
The mechanical properties, electrical and thermal conductivity of single-walled carbon nanotube (SWCNT) buckypaper (BP) embedded in poly(ether ether ketone) (PEEK) or poly(phenylene sulphide) (PPS) matrices were investigated. Dynamic mechanical analysis demonstrated a significant increase in the storage modulus and glass transition temperature of the polymers, indicating strong SWCNT–matrix interfacial adhesion. The composites showed improved stiffness and strength, as revealed by tensile and flexural tests, while their ductility and toughness moderately decreased. Exceptional enhancements in the electrical and thermal conductivity of PPS and PEEK were found. Their Young’s moduli and thermal conductivities were compared with the predictions of theoretical models. This investigation indicates that SWCNT-BPs possess great potential to improve the performance of thermoplastics and satisfy a wide variety of demands in multi-disciplinary technological applications.  相似文献   

16.
Shear properties of compression-molded discontinuous AS4 carbon fiber reinforced poly(ether ether ketone) composites are evaluated with Iosipescu tests. It is found that both shear modulus and shear strength strongly depend on the molding conditions. A comparison between shear behavior of the composites and composites morphology reveals that fusion of the composite pellets and fiber/matrix interfacial interaction on molecular scale are the two dominant factors which determine the processing dependent shear properties of the materials studied.  相似文献   

17.
Functionalization of multi-walled carbon nanotubes (MWNTs) surface by sulfonated poly (ether ether ketone) SPEEK chains using a direct attachment reaction was investigated. A two step method was performed. MWNTs were oxidized by a nitric acid treatment to generate carboxyl groups on their surface. The grafting reaction of sulfonated groups of SPEEK with carboxyl groups present on the surface of oxidized MWNTs readily proceeds by using hexane diamine as an interlinking molecule. Transmission electron microscopy (TEM) shows that tubes are wrapped by polymer chains. Near edge X-ray absorption fine structure spectroscopy (NEXAFS) at the C K-edge, O K-edge, and N K-edge and X-ray photoelectron spectroscopy (XPS) were used to give evidence of covalent functionalization of MWNTs by SPEEK macromolecules.  相似文献   

18.
Pristine carbon nanotubes (CNTs) and noncovalently functionalized carbon nanotubes (f-CNTs) were used to prepare poly(ether ether ketone) (PEEK) composites (CNTs/PEEK and f-CNTs/PEEK) via melt blending. Noncovalently functionalized multiwalled nanotubes were synthesized using hydrogen-bonding interactions between sulfonic groups of sulfonated poly(ether ether ketone) (SPEEK) and carboxylic groups of nanotubes treated by acid (CNTs–COOH). The effects of these two kinds of nanotubes on the mechanical properties and crystallization behavior of PEEK were investigated. CNTs improved mechanical properties and promoted the crystallization rate of PEEK as a result of heterogeneous nucleation. Better enhancement of mechanical properties appeared in the f-CNTs/PEEK composites, which is ascribed to the good interaction between f-CNTs and PEEK. However, the strong interaction of f-CNTs and PEEK chains decreased the crystallization rate of PEEK for high content of f-CNTs.  相似文献   

19.
This work aimed to produce poly(acrylonitrile-co-itaconic acid) (P(AN-co-IA)) nanocomposites with poly(3,4-ethylenedioxythiophene) (PEDOT) and poly(3-methoxythiophene) (PMOT). An anionic surfactant sodium dodecyl benzene sulphonate was used in emulsion polymerization for nanocomposite production. Incorporations of PEDOT and PMOT on the nanoparticles were characterized by scanning electron microscopy (SEM), atomic force microscopy, Fourier transform infrared-attenuated total reflectance spectroscopy and ultra-violet spectroscopy. These nanoparticles were blended with PAN and the blends were electrospun to produce P(AN-co-IA)–polythiophene-derivative-based nanofibres, and the obtained nanofibres were characterized by SEM and energy dispersive spectroscopy. In addition, electrochemical impedance studies conducted on nanofibres showed that PEDOT and PMOT in matrix polymer P(AN-co-IA) exhibited capacitive behaviour comparable to that of ITO–PET. Their capacitive behaviour changed with the amount of electroactive polymer.  相似文献   

20.
This work investigates processing-microstructure relationships of a model cryogenically mechanically alloyed polymer-polymer system consisting of polycarbonate (PC) and poly(aryl ether ether ketone) (PEEK). Powders mechanically alloyed for 10 hours were imaged via transmission electron microscopy (TEM) and were shown to have a two-phase microstructure physically mixed on a sub-micron level. These powders were processed into coupons using a laboratory scale ram-injection molder, and the resulting microstructure of the coupons was investigated as a function of mechanical alloying and injection molding parameters. Atomic force microscopy, TEM, and scanning transmission X-ray microscopy all revealed that the intimate blending achieved during the mechanical alloying process was not retained upon post-processing using this conventional polymer processing technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号