共查询到16条相似文献,搜索用时 45 毫秒
1.
2.
结合像元形状特征分割的高分辨率影像面向对象分类 总被引:3,自引:0,他引:3
针对高分辨率遥感影像空间分辨率高,结构形状、纹理、细节信息丰富等特点,提出一种新的融合特征的面向对象影像分类方法来提取城市空间信息。基本过程包含以下4个方面:①提取影像的几何纹理等结构;②融合几何与纹理特征的面向对象影像分割;③提取对象的形状、纹理和光谱特征,并优选最佳特征子集;④最后基于支持向量机(SVM)完成面向对象的影像分类。通过对福州IKONOS影像数据实验,结果表明融入影像特征后的分割效果明显优于原始影像的分割结果,而信息最大化(mRMR)的特征选择能够快速地获得较好的特征子集。通过与eCognition最邻近分类方法比较,表明本文方法的分类总体精度大约提高了6%,效果显著。 相似文献
3.
影像分割是面向对象遥感影像分类的基础步骤,而分割尺度又是影像分割的核心问题。研究针对面向对象遥感影像分类中的最优分割尺度选择问题,以分割后影像区域对象矢量边界线与欲分类目标对象真实矢量边界的吻合程度为标准,通过两者多向距离量化吻合程度,提出了一种最优分割尺度定量选择的新方法——矢量距离指数法。通过两种实验,同步验证了该方法的正确性与适用性,实验1将基于矢量距离指数法选择的最优分割尺度结果与较为成熟的人为试错法的选择结果比较,结果表明针对7种地类的矢量距离指数均可以正确反映最优分割尺度;实验2挖掘了矢量距离指数法选择的结果与分类精度的关系,结果表明其中5种地类在矢量距离指数法选择的最优分割尺度上均达到了最大的分类精度,另外2种地类的分类结果最符合实地情况,与欲分类目标最为接近。基于矢量距离指数法基本原理,研究针对分割过程中的“淹没”与“破碎”现象,进一步提出了能够反映两者矛盾程度的尺度指数,该指数能够真实反映针对某种特定地物类型分割尺度的大小状况,为衡量“破碎”与“淹没”的矛盾程度提供了一种定量工具,在分割尺度选择过程中具有重要的指示意义。 相似文献
4.
以遥感影像认知和地学理解为主要分析视角,在图像多尺度分割的基础上,充分挖掘目标地物的光谱特征、形状特征、纹理特征和语义特征信息,明确对象的特征信息与地物之间的对应关系。在此基础上,合理选择目标地物的分类特征,建立分类规则,实现研究区地物的逐级分层分类。结果表明:所选特征能够很好地实现目标地物的信息提取,并具有明确的地学意义,便于理解。与传统的基于像素的最大似然法分类相比较,该方法分类精度有明显提高。 相似文献
5.
面向对象高分辨遥感影像分类研究 总被引:1,自引:0,他引:1
高空间分辨率遥感影像采用传统基于像元分类方法精度较低,本文通过分析高分辨遥感影像特征,采用面向对象的最近邻监督分类方法对QuickBird影像进行分类研究,首先对影像进行对象分割,然后将分割对象信息、形状特征与及上下文联系等特征构成特征空间进行最近邻监督分类,并与传统的基于像元最近邻分类方法分类进行比较分析,结果表明,本方法能够较好的识别高分辨率地物类型,总精度为92.19%,Kappa系数为0.8835,较好地改善分类效果,适合高分辨遥感影像分类。 相似文献
6.
基于面向对象信息提取技术的城市用地分类 总被引:10,自引:2,他引:10
针对高分辨率遥感影像的城市用地分类,引入了面向对象的信息提取技术,并将其与传统基于像素光谱信息的分类方法进行了比较。在此基础上详述了面向对象信息提取的关键技术---多尺度影像分割和基于分割的分类技术。以城市作为研究区,实现城市用地的自动分类。图像处理过程包括几何校正、HIS融合、图像分割和图像分类。最终分类结果表明:视觉上,面向对象信息提取技术克服了传统方法无法克服的“椒盐”噪声的影响;精度上,面向对象信息提取技术的总体精度高达84.82%,比最大似然法的总体精度提高了10.95%,并且各类地物信息的提取精度均有所提高,其中草地、道路、建筑物阴影的精度较高。 相似文献
7.
针对高分辨率遥感影像土地利用多分类结果中地块结构不完整、边界质量差的问题,提出了基于MLUM-Net模型的遥感影像土地利用多分类方法。该方法利用多尺度空洞卷积和通道注意力机制构造MDSPA编码器,提高了网络多尺度特征提取能力与地块位置定位的准确性,并通过空间注意力机制自适应增强了多尺度特征表达;为消除上采样语义损失和减少分类结果噪声,设计了混合池化上采样优化模块,用于优化分类结果并消除网络分类误差;根据土地利用多分类数据集类别占比不均衡的特点和地块结构的相似性指数设计混合损失函数,消除数据类别占比产生的影响,提高地块结构完整性和精细化分类边界。在多个数据集上进行了实验验证,总体精度和kappa指标均有明显提高,其分类结果结构完整且边缘划分准确,在土地利用多分类领域具有较好的实用价值。 相似文献
8.
基于对象级的高分辨率遥感影像分类研究 总被引:7,自引:0,他引:7
依据高分辨率遥感影像的特点,结合深圳市QUICKBIRD数据提出一种基于多尺度分割的对象级遥感分类方法。文中首先利用分形网络演化法(FNEA)进行多尺度图像分割,获取对地表实体更具代表性的图像对象,然后利用对象所包含的光谱、空间特征来确定地物识别中可能要用到的各种特征参数,最后通过构建语义结构实现了研究区地物的逐级分层分类。研究结果表明,本文所采取的方法比传统方法在分类精度上有了明显的提高,为高分辨率遥感影像的信息提取提供了新的技术途径。 相似文献
9.
提出一种基于ART2技术的面向对象的高分辨遥感影像分类方法。该方法首先对高分辨遥感影像进行多尺度分割,将影像图分割得到的每一区域看作一个对象,进行特征值分析,计算出每一对象的特征向量。特征向量作为ART2分类器的网络输入,利用ART2分类器的大规模并行处理和很强的自适应、自学习能力来对分割得到的区域进行分类。与传统的面向像素的ART分类技术及其它神经网络遥感影像分类方法相比,所提出的方法能够对高分辨的遥感图片进行更精确的分类。 相似文献
10.
利用ALOS数据,在Definiens Developer 7软件中用分形网络演化法(FNEA)进行多级分割,获取影像对象。综合运用对象的光谱、空间特征和不同层对象之间的关系,提取了湖北省洪湖市试验区土地覆盖与土地利用信息。最后,用一种基于单层分割的面向对象分类方法和基于像素的最大似然法与这种基于多级分割的面向对象分类方法进行了对比分析。结果表明,基于多级分割的面向对象分类方法,不仅克服了基于像素的最大似然法出现的“椒盐”现象,在分类精度上较这两种分类方法也有大幅度的提高。 相似文献
11.
12.
太湖湖滨敏感区的土地利用遥感分类研究 总被引:1,自引:0,他引:1
近年来太湖流域水体污染日趋严重,土地利用是重要的环境变化影响因子,对太湖湖滨敏感区土地利用分类研究具有重要意义。研究基于2010年ALOS多光谱遥感影像,以太湖流域上游的武进港、直湖港流域为研究区,根据研究区实际状况和研究目的,建立太湖流域上游湖滨敏感区的土地利用/土地覆被分类系统,并用于该地区的面向对象遥感分类,研究通过影像的多尺度分割,获得不同层次的影像对象,在不同层次设置对应的分类规则,以充分利用影像中地物的光谱、纹理和不同层对象相互关系等信息,从而提高分类效果。研究表明:在面向对象多尺度影像分割的基础上,基于决策树建立多个分类规则的分类方法,能够有效提取建设用地、道路、水体等几类信息,分类总体精度达到88.00%;同时,该地区主要土地利用类型如耕地、农村居民点和城镇居民点的分类精度也较高,这也表明该分类方法对整个太湖流域以及其他平原河网地区的土地利用相关研究具有一定的实用价值。 相似文献
13.
针对基于像元光谱特征提取沙化土地信息分类精度偏低的问题,以Landsat\|5 TM为数据源,基于面向对象的方法对沙化土地遥感信息提取技术进行研究。首先采用多尺度分割法对影像进行分割以获得同质区域,然后结合野外调查数据制成不同地物类型的多种特征图,从而确定提取目标地物的特征并建立沙化和非沙化地物提取决策树,最后对影像进行模糊分类,并对分类结果进行精度评价。结果表明,基于面向对象提取沙化土地信息的总精度达84.89%,Kappa系数为0.8077。研究结果为后续深入研究奠定了基础。 相似文献
14.
面向对象的高光谱遥感影像分类方法研究 总被引:1,自引:0,他引:1
在基于像素的高光谱影像分类方法的基础上,结合面向对象图像分析理论与方法,提出面向对象的高光谱遥感影像分类方法,并具体分析探讨了面向对象高光谱遥感影像分类的关键技术,包括多尺度分割、最优波段选择、人机交互和知识库的建立等。试验表明,面向对象的分类方法应用于高光谱影像较传统分类方法有较高的精度,有很大的应用潜力。 相似文献
15.
高分辨率遥感影像能够提供丰富的地物细节,但各种地物空间分布复杂,同类目标呈现出较大的光谱异质性,给传统模式识别分类器带来极大的挑战。提出了一种样本自适应多特征加权的遥感图像分类方法。常见的多特征组合分类器未能充分利用各种特征之间的局部相关性,提出通过分析测试样本局部特征相关性,探究各个特征在不同样本的分类中所占权重的不同,据此对不同分类器进行自适应加权。在一个大型遥感图像数据库上的实验结果表明,不同特征在遥感图像中对不同样本的分类作用是不同的,样本自适应特征加权法将平均分类精度从78.3%提高到90%。 相似文献
16.
面向对象的遥感图像融合处理系统的设计与应 总被引:6,自引:2,他引:6
基于图像处理和软件工程理论,详细介绍了面向对象的遥感图像融合处理系统的总体设计思想以及小波变换融合算法。结合ENVI/IDL提供的开发语言,完成系统的软件研制,并分析其功能特点。最后以某地区的遥感图像为例,同时应用ENVI平台和该软件进行融合处理。目视和定量分析的结果说明,本系统在处理速度、融合精度、可操作性等方面均有良好的竞争力。 相似文献