首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, we present the effect of nitrogen incorporation on the dielectric function of GaAsN samples, grown by molecular beam epitaxy (MBE) followed by a rapid thermal annealing (for 90 s at 680 °C). The GaAs1 − xNx samples with N content up to 1.5% (x = 0.0%, 0.1%, 0.5%, 1.5%), are investigated using room temperature spectroscopic ellipsometry (SE). The optical transitions in the spectral region around 3 eV are analyzed by fitting analytical critical point line shapes to the second derivative of the dielectric function. It was found that the features associated with E1 and E1 + Δ1 transitions are blue-shifted and become less sharp with increasing nitrogen incorporation, in contrast to the case of E0 transition energy in GaAs1 − xNx. An increase of the split-off Δ1 energy with nitrogen content was also obtained, in agreement to results found with MOVPE GaAs1 − xNx grown samples.  相似文献   

2.
III–V alloys containing nitrogen and As or P are potential candidate materials for infrared applications. The most studied material in this system is GaAs1−xNx. After reviewing the early experiments, and some theoretical predictions, we describe growth experiments by metalorganic molecular beam epitaxy, in which highly crystalline, single phase material was obtained for x≤0.18. Room temperature photoluminescence was measured for layers with x=0.73%. The GaAsN alloys seem to exhibit a composition dependent bowing parameter.  相似文献   

3.
The BaxSr1−xTiO3 (BST)/Pb1−xLaxTiO3 (PLT) composite thick films (20 μm) with 12 mol% amount of xPbO–(1 − x)B2O3 glass additives (x = 0.2, 0.35, 0.5, 0.65 and 0.8) have been prepared by screen-printing the paste onto the alumina substrates with silver bottom electrode. X-ray diffraction (XRD), scanning electron microscope (SEM) and an impedance analyzer and an electrometer were used to analyze the phase structures, morphologies and dielectric and pyroelectric properties of the composite thick films, respectively. The wetting and infiltration of the liquid phase on the particles results in the densification of the composite thick films sintered at 750 °C. Nice porous structure formed in the composite thick films with xPbO–(1 − x)B2O3 glass as the PbO content (x) is 0.5 ≥ x ≥ 0.35, while dense structure formed in these thick films as the PbO content (x) is 0.8 ≥ x ≥ 0.65. The volatilization of the PbO in PLT and the interdiffusion between the PLT and the glass lead to the reduction of the c-axis of the PLT phase. The operating temperature range of our composite thick films is 0–200 °C. At room temperature (20 °C), the BST/PLT composite thick films with 0.35PbO–0.65B2O3 glass additives provided low heat capacity and good pyroelectric figure-of-merit because of their porous structure. The pyroelectric coefficient and figure-of-merit FD are 364 μC/(m2 K) and 14.3 μPa−1/2, respectively. These good pyroelectric properties as well as being able to produce low-cost devices make this kind of thick films a promising candidate for high-performance pyroelectric applications.  相似文献   

4.
Investigation of MBE grown GaAs/AlGaAs/InGaAs heterostructures   总被引:1,自引:0,他引:1  
This paper reports on the influence of the In mole fraction variation (0.1≤x≤0.25) of MBE grown pseudomorphic GaAs/AlyGa1−yAs/InxGa1−xAs heterostructures on the material quality and the performance of the fabricated devices. For x=0.1–0.15, the carrier mobility in the samples was 4500 cm2 V−1 s (at 300 K) and 37 000 cm2V−1 s (at 77 K) and decreased significantly at low temperatures as x was increasing up to 0.25. Transistors with gate length of 0.8 m and In0.1Ga0.9As channels exhibited transconductances of 200–220 mSm mm−1 and output conductances of 0.15–0.20 mSm mm−1, while gate-source breakdown voltages were 27–28 V. Delay times of the designed and fabricated ICs frequency dividers by 2 were 130–140 ps.  相似文献   

5.
Structural properties of ion-beam-induced epitaxial crystallization (IBIEC) for amorphous layers of GaAs on GaAs(100), BP on BP(100) and Si1−xGex and Si1−xyGexCy on Si(100) have been investigated. Crystallization was induced by ion bombardment with 400 keV Ne, Ar or Kr at 150 °C for GaAs and at 350 °C for BP. Epitaxial crystallization up to the surface was observed both in GaAs and BP at temperatures much below those required for the solid phase epitaxial growth (SPEG). The growth rate per nuclear energy deposition density has shown a larger dependence on ion dose rate in cases of heavier ion bombardments both for GaAs and BP. Crystallization of a-GaAs with ions whose projected ranges are within the amorphous layer thickness was also observed at 150 °C. Epitaxial crystallization of Si1−xGex and Si1−xyGexCy layers (x = 0.13 and y = 0.014 at peak concentration) on Si(100) formed by high-dose implantation of 80 keV Ge and 17 keV C ions has been observed in the IBIEC process with 400 keV Ar ion bombardments at 300–400 °C. Crystalline growth by IBIEC has shown a larger growth rate in Si1−xyGexCy/Si} than in Si1−xGex/Si} with the same Ge concentration for all bombardments under investigation. X-ray rocking-curve measurements have shown a strain-compensated growth in Si1−xyGexCy/Si}, whereas Si1−xGex/Si} samples have shown a growth with strain accommodation.  相似文献   

6.
Selective wet chemical etching of the AlxGa1−xAs/GaAs system has been applied to heterostructure characterization. Samples of LPE grown AlGaAs/GaAs laser double-heterostructures and separate confinement heterostructures as well as antiresonant reflecting optical waveguides heterostructures were treated with “I2 solution” (I2:KI:H2O) and hydrochloric acid. These compounds selectively etch the ternary AlxGa1−xAs layers, but with different “threshold composition” xth values (the x value is that above which the etching rate of a given compound increases sharply). Selectively etched samples have been examined by SEM. The experimental dependence of etching rate on the x value for I2 solution has been derived. From this dependence, the x composition of any ternary layer can be estimated simply. Observations were made of the “microscopic” properties of the heterostructure, such as the smoothness of the interfaces and the uniformity of layers. All imperfections resulting from the growth process, such as interface perturbations or compositional nonuniformity of layers, are clearly seen. An additional advantage of this etching technique is its simplicity. It allows quick examination of grown heterostructure for the selection of wafers for further processing.  相似文献   

7.
Ingots containing single crystals of the quaternary alloys CuIn1 − xAlxS2 (CIAS) were grown by a horizontal Bridgman method for compositions with x = 0, 0.2 and x = 0.4. (CIAS) thin films were prepared by thermal evaporation technique on to glass substrates. Structural and optical properties of the films were studied in function of the Al content. Band gap, and absorption coefficients were determined from the analysis of the optical spectra (transmittance and reflectance as a function of wavelength) recorded by a spectrophotometer. The samples have direct bandgap energies of 1.95 eV (x = 0), 2.06 eV (x = 0,2) and 2.1 eV (x = 0,4). These optical results were correlated with the structural analysis by X-Ray diffraction.  相似文献   

8.
Solid solutions of Bi3(Nb1−xTax)O7 (x = 0.0, 0.3, 0.7, 1) were synthesized using solid state reaction method and their microwave dielectric properties were first reported. Pure phase of fluorite-type could be obtained after calcined at 700 °C (2 h)−1 between 0 ≤ x ≤ 1 and Bi3(Nb1−xTax)O7 ceramics could be well densified below 990 °C. As x increased from 0.0 to 1.0, saturated density of Bi3(Nb1−xTax)O7 ceramics increased from 8.2 to 9.1 g cm−3, microwave permittivity decreased from 95 to 65 while Qf values increasing from 230 to 560 GHz. Substitution of Ta for Nb modified temperature coefficient of resonant frequency τf from −113 ppm °C−1 of Bi3NbO7 to −70 ppm °C−1 of Bi3TaO7. Microwave permittivity, Qf values and τf values were found to correlate strongly with the structure parameters of fluorite solid solutions and the correlation between them was discussed in detail. Considering the low densified temperature and good microwave dielectric proprieties, solid solutions of Bi3(Nb1−xTax)O7 ceramics could be a good candidate for low temperature co-fired ceramics application.  相似文献   

9.
This work concerns investigations on electrical properties of amorphous GaAs1−xNx thin films grown on GaAs substrates. Film deposition was carried out by RF sputtering of a GaAs target by adding a nitrogen carrier gas (NH3) to an Ar plasma. Chemical etching of substrates followed by different plasma treatments (like reverse bias and/or NH3 glow discharge) prior to film deposition have been studied. The effects of substrate and growth temperature and of total pressure in the reactor have been analysed. Electrical characteristics (CV and CV(T)) have enabled us to put in evidence the evolution of interface states of the a-GaAs1−xNx/c-GaAs junctions. The amorphous GaAs1−xNx thin films are potentially interesting to be considered for GaAs-based MIS structures, due to their relatively high resistivity values, or as passivating layers on GaAs devices.  相似文献   

10.
Photoluminescence (PL) and photoluminescence excitation (PLE) of modulation doped p-type Al1−xGaxAs/GaAs heterostructures were studied at GaAs band gap region under the magnetic field up to 8 T in Faraday configuration. In the PL spectra a broad line, so called H-band, was visible. We observed a linear shift of this line with magnetic field. In the PLE spectra new lines, never reported before, were detected. They were slightly shifted by the magnetic field in a low-field regime and disappeared at B=3 T. In our interpretation the PLE lines originated from excitations of quasistationary interface excitons, whereas the H-band is the result of a free electron-confined hole recombination. Theoretical data are in good agreement with experimental results.  相似文献   

11.
Zn1−xCdxSe epitaxial growth by molecular beam epitaxy (MBE) on the GaAs (110) surface cleaved in ultra high vacuum (UHV) was investigated. The growth mode of Zn1−x CdxSe on GaAs (110) was not a simple Stranski–Krastanow type. At initial growth stage, growth mode was two-dimensional type. However, as the growth proceeds three-dimensional island growth and two-dimensional growth modes compete. As a result, two kinds of structures were spontaneously formed on the surface, pyramidal-shaped islands and ridge structures aligned to the [1 0] direction. Anisotropic in-plane strain relaxation on (110) is suggested as the formation mechanism of such structures.  相似文献   

12.
In this work, we consider a 2D model for calculation of cathodoluminescence in GaN-based structures. This model is developed using an extended generation profile and taking into account the influence of the carrier diffusion process, internal absorption and some radiative recombination processes. First, we have investigated the effect of hole diffusion length and the surface recombination velocity on the CL spectra of GaN sample grown at 800 °C by MOVPE method. Then, we have calculated the dependence of CL intensity from AlGaN alloys as a function of Al content and the electron beam energy.

Results show a red shift of the CL peaks when the beam energy is varied from 2 to 10 keV at room temperature. The band-edge emission of AlxGa1 − xN shifts about 0.49 eV when the Al composition is increased from x = 0.18 to 0.38. Comparison of the experimental spectra with simulations shows a good agreement.  相似文献   


13.
On the basis of the FDUC model and the hypothesis of the constant covalent radii, the expressions of the atomic nearest-neighbor and the next-nearest-neighbor bond-lengths were derived for A1−xBxC1−yDy III–V quaternary solid solutions. This set of bond-length expressions predicts the averaged bond-lengths and bond angles at any concentration (x, y) for the III–V pseudobinary and quaternary solid solutions, which are only dependent on the lattice parameters and the concentrations of the pure end compounds. When x=0, 1 or y=0, 1, A1−xBxC1−yDy III–V quaternary solid solutions degenerate into the relative pseudobinary solid solutions, in which the nearest-neighbor and the next-nearest-neighbor bond-lengths agree well with the experimental results. Further discussion and comparison with other theoretical models are also given in this paper.  相似文献   

14.
An electrode/electrolyte interface has been formed between an n-type CdSe1−xTex (0≤x≤1) alloyed/mixed type semiconductor and a sulphide/polysulphide redox electrolyte. It has been investigated through the current–voltage, capacitance–voltage and spectrally selective properties. The dependence of the dark current through the junction and the junction capacitance on the voltage across the junction have been examined and analysed. It appeared that the current transport mechanism across the junction is strongly influenced by the recombination mechanism at the interface and series resistance effects. Upon illumination of the interface with a light of 20 mW cm−2, an open circuit voltage of the order of 0.35 V and a short circuit current of 212 μA cm−2 have been developed (for x=0.2), yielding an efficiency of energy conversion equal to 0.2% and a form factor of 45%. The action spectra in the 450–1000 nm wavelength range showed presence of the interface states at the electrode/electrolyte interface. The magnitudes of the barrier heights at the interfaces were also determined. It has been seen that a significant improvement in the electrochemical performance of a cell is noticed for the electrode composition with x=0.2.  相似文献   

15.
Bing Yan  Xue-Qing Su 《Optical Materials》2007,29(12):1866-1870
YxGd1−xVO4:Tm3+ (5 mol%) phosphors were prepared by in situ co-precipitation technology with the different content ratio of Y/Gd (x = 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, respectively). During the process, rare earth coordination polymers with o-hydroxylbenzoate were used as precursors, composing with polyethylene glycol (PEG) as dispersing media. After heat-treatment of the resulting multicomponent hybrid precursors at 900 °C, the samples were obtained. SEM indicated the particles present good crystalline state, whose crystalline grain sizes were about 0.2–2 μm. Under the excitation of 257 nm, all the materials show the characteristic emission of Tm3+ which is the strong blue emission centered at 475 nm originating from 1G4 → 3H6 of Tm3+. Besides this, concentration quenching appears in the system of YVO4:Tm3+ and GdVO4:Tm3+. And when x reaches 0.5, the system of YxGd1−xVO4:Tm3+ shows the strongest blue emission.  相似文献   

16.
Si1−xGex is a prospective material for electronics. This is mostly because Si1−xGex-based technology is close to silicon-based technology, which is advanced, widely applicable, and cheap. The majority of work on this material is devoted to Si1−xGex-based heteroepitaxy, and in particular to the Si1−xGex/Si system; few publications are devoted to bulk single-crystal. Here we focus on some interesting properties of bulk Si1−xGex solid solutions. First, under heat treatment and alpha- and beta-irradiation the efficiency of defect introduction decreases with the increase of Ge composition of the Si1−xGex single-crystal. This is because Ge atoms in a crystal lattice are annihilation centers for primary defects. Hence, this material is more resistant to temperature and radiation than silicon. Second, it is known that, since Z(Ge)Z(Si), the sensitivity of the material to irradiation should increase with the concentration of Ge. We show that Si1−xGex nuclear detectors have efficiency three times higher than silicon detectors. Finally, we note that one of the major problems in materials based on solid solutions is the composition uniformity. Our investigations on the influence of composition fluctuations on material properties have shown that the material has a sufficient uniformity at x<0.1. Such an alloy is a prospective material for electronics.  相似文献   

17.
In this study, by using the full-potential linear augmented plane wave (FLAPW) method based on the density functional theory (DFT), the lattice parameter of CoSi was calculated theoretically and the calculations of the electronic structures of CoSi and CoSi1−xMx (M = Al, P and x = 0.03125, 0.125) were performed. The calculated lattice parameter of binary CoSi is about 0.27% smaller than the experimental value. Calculated electronic structures show that CoSi is a semi-metal and the density of states (DOS) is very small at the Fermi level. M-doping can tune the Fermi level and the hole pockets and the electron ones, which is very valuable to modulate the transport properties. Based on the calculated electronic structures and our experimental results on CoSi [C.C. Li, W.L. Ren, L.T. Zhang, K. Ito, J.S. Wu, J. Appl. Phys. 98 (2005) 063706], the intrinsic relations between electronic structures and transport properties of CoSi and CoSi1−xAlx are discussed in detail. The transport properties along main crystallographic directions of binary CoSi and CoSi1−xAlx are experimentally examined. The experimental results show that the electrical resistivity of CoSi-based compounds is anisotropic, while the Seebeck coefficient is almost isotropic. The calculated band structures of CoSi1−xAlx can theoretically interpret the anisotropy of the electrical transport properties.  相似文献   

18.
Glasses of various compositions in the system (100 − x)(Li2B4O7) − x(SrO–Bi2O3–0.7Nb2O5–0.3V2O5) (10  x  60, in molar ratio) were prepared by splat quenching technique. The glassy nature of the as-quenched samples was established by differential thermal analyses (DTA). The amorphous nature of the as-quenched glasses and crystallinity of glass nanocrystal composites were confirmed by X-ray powder diffraction studies. Glass composites comprising strontium bismuth niobate doped with vanadium (SrBi2(Nb0.7V0.3)2O9−δ (SBVN)) nanocrystallites were obtained by controlled heat-treatment of the as-quenched glasses at 783 K for 6 h. High resolution transmission electron microscopy (HRTEM) of the glass nanocrystal composites (heat-treated at 783 K/6 h) confirm the presence of rod shaped crystallites of SBVN embedded in Li2B4O7 glass matrix. The optical transmission spectra of these glasses and glass nanocrystal composites of various compositions were recorded in the wavelength range 190–900 nm. Various optical parameters such as optical band gap (Eopt), Urbach energy (ΔE), refractive index (n), optical dielectric constant and ratio of carrier concentration to the effective mass (N/m*) were determined. The effects of composition of the glasses and glass nanocrystal composites on these parameters were studied.  相似文献   

19.
The mechanical properties like hardness, Hv and compressive strength, σ of Ni1−xZnxFe2O4 (x = 0.2, 0.3, 0.4 and 0.5) prepared by the non-conventional flash combustion and citrate-gel decomposition techniques are studied and reported. It is observed that there is an increase in hardness with zinc content as well as sintering temperature. The hardness in the order of 2.0–3.63 GPa and compressive strength in the order of 150–240 MPa are obtained for Ni–Zn ferrites prepared by these non-conventional techniques. The influence of density, porosity and microstructure on hardness and compressive strength of Ni–Zn ferrites with respect to sintering temperature was studied.  相似文献   

20.
Wide-bandgap epitaxial InxGa1−xAsyP1−y layers grown on GaAs substrates were investigated as a material for photoemission electron sources for the first time. By variation of x and y, both thick (of about one μm) lattice-matched unstrained layers and thin (of about 0.2 μm) lattice-mismatched strained layers with direct energy gap from 1.78 to 1.92 eV were grown. The layers were chemically treated in a glove-box, loaded into UHV via a loading chamber without exposure to air, heat cleaned, and activated to the state of negative electron affinity (NEA). For InGaAsP it was possible to reach the NEA-state by an activation with cesium only, without oxygen. The estimated e-folding lifetime of InGaAsP photocathodes operating at DC current of 400 μA was above one thousand hours in the regime with automatical additional cesiations and above one hundred hours without additional cesiations. Lifetime limitation factors are discussed. Strain-induced splitting of the valence band up to 32 meV was observed in the lattice-mismatched films; this observation gives prospects for an increase of spin polarization beyond the 50% limit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号