首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 312 毫秒
1.
在自制的小型常压流化床内采用多孔介质床料对生物质颗粒燃料进行气化试验,分别考察了富氧气氛下温度和氧气浓度、水蒸气气氛下温度和水蒸气流量及不同种类多孔床料对生物质颗粒燃料气化的产气成分及产气热值的影响.试验结果表明:随气化温度的升高,产气中H2含量增加,CH4含量降低,产气热值降低;氧气浓度对气化有一定影响,在试验条件下,增大氧气浓度可以提高产气中H2含量;随着水蒸气流量的增加,产气中H2含量从11.89%增加到45.77%,但产气热值降低;在3种不同的多孔介质床料中,以沸石为床料时气化产H2效果最好.  相似文献   

2.
新型煤气化燃烧集成制氢系统的热力学研究   总被引:6,自引:10,他引:6  
对于以CaO为CO2接受体的无氧气化法为基础的新型煤气化燃烧集成制氢系统进行了化学热力学分析,以化学热力学平衡为基础研究了温度、压力、煤种、H2O/C比对制氢过程的影响。计算结果表明CaO的加入在一定条件下可以大大提高H2产量,气化过程的温度过高会引起CaCO3的重新分解,而温度过低则降低H2产量,合适的温度为850℃左右,合适的压力范围为2-3MPa。以纯碳为原料、气化炉中碳转化率为69%时,半焦燃烧的热量可以满足CaCO3的分解。当H2O/C在3.0-3.5之间时,气化效率达到79%左右,制氢效率为65%左右,产品气中H2含量为85%左右。与烟煤、褐煤相比,无烟煤为原料时产品气中H2含量最高,接近于以纯碳为原料的工况,而褐煤由于挥发份中CH4的含量多导致H2含量降低。  相似文献   

3.
在小型常压流化床内以多孔介质和工业用沙为床料,对生物质进行了空气、空气一水蒸气气化制取富氢燃气的试验,研究不同气化介质、温度及气化剂流量下多孔床料对生物质气化产氢特性的影响.结果表明:H2含量随气化温度升高而增大;气化剂流量对生物质气化制氢有较大影响.与普通床料相比,多孔床料对H2的生成有较强的促进作用,相同条件下采用多孔床料时,氢气体积百分含量最多可增加31.76%.  相似文献   

4.
基于灰色GM(1,1)模型预测固废气化焚烧污染物排放   总被引:2,自引:0,他引:2  
基于灰色理论,建立了有机固体废物气化处理气化燃料燃烧气态污染物部分组分浓度的GM(1,1)预测模型、预测精度评估,并编制了相应的M atlab应用程序。以氧气流量为3 m3/h,混合固废物料(12.9%稻壳、15.8纸屑、17.5%树叶、24.8%蒿草、29.0%内胎)在不同温度(650℃、700℃、750℃、800℃、850℃)气化时焚烧气结果为例,建立了不同温度下NO、NO2、NOX、SO2含量的GM(1,1)模型,利用该模型预测混合固废物料900℃气化焚烧气的产气组分中NO、NO2、NOX、SO2的含量分别是57.133 9 ppm、9.911 1 ppm、69.764 3ppm、28.774 7 ppm,残差百分率最大的是NOX,仅为-2.9534%,说明GM(1,1)模型预测精度较好。  相似文献   

5.
化学链燃烧能在能量释放的同时有效分离CO2。该文用ASPEN PLUS软件对Ni/NiO/NiAl2O4作载氧体的整体煤气化链式燃烧联合循环系统进行了模拟,研究了管式气化方式和德士古(Texaco)气化方式对联合循环系统性能的影响,并对2种气化系统进行了比较。模拟结果表明,空气反应器温度1 200℃,补燃后透平进口温度1 350 ℃,管式气化系统效率为44.36%,德士古气化系统效率为41.81%;空气反应器温度从1 000 ℃升高到1 200 ℃,管式气化系统CO2减排量从174 g/(kW×h)减少到75 g/(kW×h),德士古气化系统CO2减排量从260 g/(kW×h)减少到133 g/(kW×h);补燃后透平进口温度从1 300 ℃升高到1 500 ℃,管式气化系统效率从43.96%提高到45.53%,德士古气化系统效率从41.14%提高到42.9%;在一定的透平进口温度下,存在最佳压气机压缩比。  相似文献   

6.
矿用隔爆型潜水电泵(1)型号表示方法产品型号举例:QWK25-15-3表示矿用(隔爆型)潜污水电泵,流量25m3/h,扬程15m,额定功率3kW;QBK50-10-3表示矿用隔爆型潜(污)水电泵,流量50m3/h,扬程10m,额定功率3kW。(2)使用条件1)适用于在煤矿井下采掘面或其他矿区作业面输送含有污物、煤粉和泥沙等固体颗粒的污水。2)煤矿井下含有甲烷和煤尘等爆炸性危险的场所;3)水中固体颗粒含量的体积比一般不大于2%,最高不大于4%,介质密度不大于1 100kg/m3;4)水温不超过40℃;5)水的pH值一般为5~9,最大范围为4~10;6)周围空气温度不超过40℃;7)海…  相似文献   

7.
循环流化床煤气化试验研究   总被引:8,自引:8,他引:8  
在常压循环流化床中试装置上进行了神华煤的气化试验,试验条件:加煤速率5.4~8.14kg/h、蒸汽煤比0.19~0.7kg/kg、空气煤比2.8—3.67kg/kg,分析了试验条件对煤气组成、热值、碳转化率和煤气效率的影响。在该试验阶段获得的煤气的最高热值为3.84MJ/Nm^3,最高碳转化率为73.6%。由于提升管的高度很小、气化温度较低以及旋风炉对细颗粒分离效率不高,导致损失于飞灰中碳较多。试验结果表明对神华煤而言,气化温度应低于930℃以避免结渣。  相似文献   

8.
以污泥为研究对象,利用Aspen Plus软件建立气化反应模型,对生物质高温氧气气化进行模拟计算。探讨了不同反应条件,包括空气当量比、气化压力以及污泥含水率对气化温度、气化产物、产气热值的影响。结果显示,污泥高温氧气气化得到的可燃气体主要成分为CO、H2、CO2和H2O,H2S含量很少,CH4含量基本为零;污泥含水率的增加,必须提高空气当量比才能确保气化温度在1 000℃以上;随着空气当量比的增加,CO和H2含量降低,产气的热值也降低;随气化压力的升高,H2S和CH4的含量增加,但CO和H2的含量却降低,产气的热值随压力的增加略有提高。  相似文献   

9.
在温度为650℃、过量空气系数为0.4的条件下,对城市生活垃圾的4种典型组分(聚乙烯、橡胶、木竹和纸)进行气化试验研究。运用灰色关联分析理论,考察物料性质对气化合成气的影响。CO和H2的主要影响因素为固定碳;CH4和C2H4的主要影响因素为挥发分;CO2和O2的主要影响因素为水分。影响总体气化气的因素依次为:固定碳水分挥发分灰分。  相似文献   

10.
生物质流化床空气水蒸气气化模拟   总被引:1,自引:0,他引:1  
生物质气化是一种可有效利用生物质能源的热化学转化技术。该文利用大型化工流程模拟软件Aspen Plus建立生物质在流化床气化炉内空气水蒸气气化模型,并研究气化温度对产气组分的影响。将模拟结果与试验结果进行了对比,吻合良好,表明该模型具有一定的适用性。利用灵敏度分析功能研究了空气当量比(equivalence ratio,ER)和水蒸气/生物质质量比(S/B)对产气组分、热值以及气化效率的影响。结果表明:提高气化温度,产气中H2和CO2含量增加,而CO和CH4含量减小;在空气当量比为0.27时气化效率最高;当S/B取1.3~1.7范围时,产气热值较高,可达11.8MJ/m3。  相似文献   

11.
采用气化焚烧炉对典型城市固体废弃物与煤的混合物料进行气化试验,气化介质分别为空气、氧气及水蒸气。研究了物料、气化温度、气化剂及气化剂流量等对气化产气特性的影响,结果表明,当物料含可燃质高时,产气品位好;空气作气化剂时产气的热值低于氧气作气化剂时的产气热值;当气化剂为氧气时,加入适量的水蒸气可提高产气品位;气化剂的流量发生变化时,气化产气成分相应改变;气化温度升高后,产气中燃气含量有所增加。  相似文献   

12.
热解条件及煤种对煤焦气化活性的影响   总被引:3,自引:2,他引:1  
该文对煤焦的常压CO2气化活性与热解制焦条件及煤种的关联耦合进行了分析研究。采用加压热重分析仪与常压热重分析仪联用对不同煤种在不同热解压力与热解终温制得煤焦的CO2气化活性进行对比分析,并提出最大比气化速率和平均气化速率用于表征煤焦的气化活性。最大比气化速率能准确表征煤焦的最大气化活性,其随热解压力的升高先减小后增大,而随热解终温的升高先增加后减小。小龙潭褐煤具有较高的最大气化活性,而神府烟煤和平寨无烟煤的最大气化活性较低。平均气化速率可很好地描述煤焦的气化过程和气化完全信息,两者结合可全面、有效地反映煤焦的气化特性,为气化炉的设计提供科学依据。  相似文献   

13.
介绍了西安热工研究院有限公司36 t/d加压气流床气化中试装置主要设备、工艺流程及工艺条件,给出了3个煤种在3.0 MPa条件下,一段投煤与两段投煤气化试验结果的主要数据。试验结果表明,两段式气化过程优于一段式气化过程。  相似文献   

14.
气流床固态排渣实验研究   总被引:1,自引:0,他引:1  
煤气化技术由于其高煤炭利用率和低污染排放,近年来得到快速发展。为扩大该技术对高灰熔点煤种的适应性,在0.5 kg/h规模的常压富氧气流床气化实验系统上,对我国高、低灰熔点煤在固态排渣温度范围内进行了煤粉富氧气化特性实验研究。研究结果表明:随着温度的升高,有效气浓度增大,碳转化率增大,冷煤气效率增大,灰渣熔融程度增强;随着氧碳比的升高,有效气浓度降低,碳转化率升高;随着停留时间的增大,有效气浓度、碳转化率和冷煤气效率都升高,灰熔融特性更加显著。不同煤种在相同条件下,灰熔融特性也不相同,低灰熔点褐煤在1300 ℃、停留时间为1.5 s时,灰熔融特性比高灰熔点烟煤明显。  相似文献   

15.
神府煤焦与CO2的气化反应动力学分析   总被引:3,自引:1,他引:2  
利用加压热天平在1 173~1 323 K、0.1~3 MPa范围内,对神府煤焦与CO2的气化反应进行动力学分析。考察温度、压力对神府煤焦与CO2气化反应动力学特性的影响及气化反应速率和反应时间之间的关系,发现气化反应速率随反应时间的变化近似呈正态分布,建立了气化反应速率与反应时间的正态分布动力学模型。与随机孔模型对比,发现正态分布时间模型能较好地描述煤焦的气化动力学规律。由正态分布模型求得的反应速率常数r0、rm遵循Arrenius定律,lnr0、lnrm对1/T呈良好的线性关系;在0.1~3 MPa范围,求得的反应活化能为150~185 kJ/mol,与相关文献报道的结果基本一致。  相似文献   

16.
垃圾衍生燃料气化动力学特性研究   总被引:1,自引:0,他引:1  
采用气化工艺处理城市固体废物不仅可以从中回收能源,同时还可以降低二次污染的影响。采用热重分析法对垃圾/生物质为1:1、1:2、1:3和纯生活垃圾的RDF样品进行气化研究,通过分析不同物料比、不同升温速率、不同气氛、不同终温对RDF气化反应过程的影响,得出RDF气化反应动力学参数。研究表明随着升温速率的增加,产气中H2的产量呈上升趋势,CO和CH4的产量先升高再降低;随着O2含量的增加,RDF的气化效果越来越好,其气化产气中H2的含量呈上升趋势。  相似文献   

17.
两段式干煤粉加压气化技术的研究开发   总被引:5,自引:0,他引:5  
大型煤气化是煤气化联合循环发电及多联产系统的核心技术,介绍了大容量化的先进的干煤粉加压气化技术。我国目前尚不具备设计、制造大型干煤粉加压气化炉的能力,为此,西安热工研究院开发出了具有自主知识产权的两段式干煤粉加压气流床气化技术,并进行了试验研究。结果表明两段式干煤粉加压气化炉的冷煤气效率比国外的技术可提高2~3个百分点,比氧耗减小,自耗功大幅度降低,煤气冷却器及净化系统的设备尺寸减小,造价降低。36~40t/h的半工业性装置的多煤种试验已累计运行2000h,为该技术的工业化奠定了基础。并介绍了目前正在开发中的1000t/d气化炉,将于2008年建成投运。  相似文献   

18.
整体煤气化联合循环(IGCC)发电系统性能分析   总被引:1,自引:0,他引:1  
余廷芳  蔡宁生 《热力发电》2006,35(9):1-3,23
介绍不同型式的整体煤气化联合循环(IGCC)发电系统。对采用空气气化的IGCC系统进行了概念设计,并对4种采用空气气化型式的IGCC发电系统进行了计算和分析,研究结果表明(1)IGCC燃煤发电系统有较大的综合优势;(2)在相同设计参数下,IGCC系统采用温度较低的流化床气化炉或采用温度较高的气流床气化炉各有优缺点,对配置低温湿法粗煤气净化系统的IGCC系统,建议采用流化床气化炉;(3)在进行IGCC设计时,燃气轮机入口温度应尽量取高值,对应此温度存在一最佳压比值;(4)IGCC系统供电效率比常规电站高5~7个百分点。  相似文献   

19.
流化床常压空气部分气化和半焦燃烧的试验研究   总被引:1,自引:1,他引:0  
为进行煤的多联产方案研究,在1 MW循环流化床热电气多联产试验装置上,选取兖州煤、大同煤为试验煤种进行了部分空气气化和半焦燃烧试验。试验结果表明,空气部分气化方案得到的煤气热值较低,为3~5 MJ/m3,在气化炉中的碳转化率为40%~70%,剩余半焦被送入循环流化床反应器中燃烧,该系统的总体转化效率为90%左右。气化炉床层温度对气化炉碳转化率影响较大,随着温度升高其碳转化率明显提高,而燃烧炉燃烧效率呈下降趋势。石灰石的加入除了对焦油的裂解有一定的促进作用外,还具有脱除硫化氢作用,当[Ca]/[S]为3时,脱硫效率为90%。气化炉的给煤量、燃烧炉运行温度随气化炉鼓风温度提高而增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号