首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effects of pH and electrolyte concentration on protein-protein interactions in lysozyme and chymotrypsinogen solutions were investigated by static light scattering (SLS) and small-angle neutron scattering (SANS). Very good agreement between the values of the virial coefficients measured by SLS and SANS was obtained without use of adjustable parameters. At low electrolyte concentration, the virial coefficients depend strongly on pH and change from positive to negative as the pH increases. All coefficients at high salt concentration are slightly negative and depend weakly on pH. For lysozyme, the coefficients always decrease with increasing electrolyte concentration. However, for chymotrypsinogen there is a cross-over point around pH 5.2, above which the virial coefficients decrease with increasing ionic strength, indicating the presence of attractive electrostatic interactions. The data are in agreement with Derjaguin-Landau-Verwey-Overbeek (DLVO)-type modeling, accounting for the repulsive and attractive electrostatic, van der Waals, and excluded volume interactions of equivalent colloid spheres. This model, however, is unable to resolve the complex short-ranged orientational interactions. The results of protein precipitation and crystallization experiments are in qualitative correlation with the patterns of the virial coefficients and demonstrate that interaction mapping could help outline new crystallization regions.  相似文献   

2.
3.
Bacteriorhodopsin (BR) is a transmembrane protein in the purple membrane (PM) of Halobacterium salinarum. Its function as a light-driven proton pump is associated with a cycle of photointermediates which is strongly hydration-dependent. Using energy-resolved neutron scattering, we analyzed the thermal motions (in the nanosecond-to-picosecond time range) in PM at different hydration levels. Two main populations of motions were found that responded differently to water binding. Striking correlations appeared between these "fast" motions and the "slower" kinetic constants (in the millisecond time range) of relaxations and conformational changes occurring during the photocycle.  相似文献   

4.
5.
6.
7.
8.
9.
10.
The small-angle X-ray scattering technique was used to characterize the structure in solution of wild type ras p21 as well as the oncogenic proteins mutated at residue 12, 59, or 61. In the presence of GDP, the radius of gyration, Rg, determined for wild type ras p21 was 16.89 +/- 0.01 A, while the wild type ras p21 bound to the GTP analogue GDPNHP (5'-guanyl imido diphosphate beta-gamma-imidoguanosine 5'-triphosphate) showed an Rg value of 17.46 +/- 0.01 A, which is 3.3% larger. The result shows that ras p21 expands upon GTP binding. The Rgs of mutated proteins were 17.04 +/- 0.01, 16.98 +/- 0.01, and 17.03 +/- 0.01 A for the Gly-12 to Val, Ala-59 to Thr, and Gln-61 to Leu mutants, respectively. The scattering profiles were analyzed by simulation of hydrated ras p21, based on the crystal atomic coordinates, and it was concluded that the ras p21 molecule incorporates 20% more bulk water upon GTP binding. The increase of bulk water is especially conspicuous around the interface between switch I (residues 32-40) and switch II (residues 60-66) regions. This suggests that hydration plays an important role in the interaction with GAP.  相似文献   

11.
12.
13.
14.
15.
16.
17.
The addition of polyethylene glycol (PEG), of various molecular weights, to solutions bathing yeast hexokinase increases the affinity of the enzyme for its substrate glucose. The results can be interpreted on the basis that PEG acts directly on the protein or indirectly through water activity. The nature of the effects suggests to us that PEG's action is indirect. Interpretation of the results as an osmotic effect yields a decrease in the number of water molecules, delta Nw, associated with the glucose binding reaction. delta Nw is the difference in the number of PEG-inaccessible water molecules between the glucose-bound and glucose-free conformations of hexokinase. At low PEG concentrations, delta Nw increases from 50 to 326 with increasing MW of the PEG from 300 to 1000, and then remains constant for MW-PEG up to 10,000. This suggests that up to MW 1000, solutes of increasing size are excluded from ever larger aqueous compartments around the protein. Three hundred and twenty-six waters is larger than is estimated from modeling solvent volumes around the crystal structures of the two hexokinase conformations. For PEGs of MW > 1000, delta Nw falls from 326 to about 25 waters with increasing PEG concentration, i.e., PEG alone appears to "dehydrate" the unbound conformation of hexokinase in solution. Remarkably, the osmotic work of this dehydration would be on the order of only one k T per hexokinase molecule. We conclude that under thermal fluctuations, hexokinase in solution has a conformational flexibility that explores a wide range of hydration states not seen in the crystal structure.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号