首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
目前在长输管道防腐补口中广泛使用的是热收缩带防腐补口工艺,而热收缩带防腐补口又分为,湿膜法和干膜法两种施工工艺。湿膜法容易出现底漆涂敷不均匀,局部厚度不够,电火花检漏不合格等问题,传统的湿膜法防腐施工已经无法满足现场施工的要求,干膜法防腐补口技术很好的解决了湿膜法补口工艺的不足。  相似文献   

2.
中小型全膜法装置日开机频率不稳定,常不能24 h连续运行.所以在停机阶段会有微生物污染,并随着时间的延长不断加重,即便是停机期间定期低压冲洗,效果也欠佳.针对微生物污染,本文介绍了一种全膜法中工艺改进的方法,同时也能应用至双膜法.应用该工艺的工厂已投产验证超过三年,系统运行稳定.  相似文献   

3.
富氮空气分离膜   总被引:1,自引:0,他引:1  
膜法分离氮气在易燃物的贮存、装运及蔬菜、水果保鲜等方面的应用正在迅速增长。膜法适合生产95%~99%纯度范围内的氮气,优于其他传统方法。简述了膜法分离氮气的原理、膜材料及制膜工艺。  相似文献   

4.
膜法富氧技术操作方便、节能、环保,是气体分离膜研究的热点之一,随着全球性的节能环保工作的开展,膜法富氧技术正日益得到广泛的重视。本文简要介绍了膜法富氧在化工、医疗保健等领域的应用并对膜法富氧技术的未来发展方向进行了初步探讨。  相似文献   

5.
简要介绍了膜法除湿原理和除湿膜分类,重点探讨了高分子聚合膜的研究进展,包括常规膜材料的改性研究和新兴膜材料的发展,膜法除湿技术在样气分析、压缩空气干燥和环境空气除湿等领域的应用情况表明,该技术具有重要的社会和经济效益。  相似文献   

6.
《应用化工》2022,(6):1428-1432
简要介绍了膜法除湿原理和除湿膜分类,重点探讨了高分子聚合膜的研究进展,包括常规膜材料的改性研究和新兴膜材料的发展,膜法除湿技术在样气分析、压缩空气干燥和环境空气除湿等领域的应用情况表明,该技术具有重要的社会和经济效益。  相似文献   

7.
对比分析了钡法和膜法两种脱硝方法,提出氯碱企业在进行离子膜法制烧碱技术改造时,淡盐水中硫酸根的去除优先选择膜法脱硝技术。虽然选择膜法脱硝技术一次性投资较大,但选择膜法可更好地保护离子膜电解槽及提高电流效率。  相似文献   

8.
压力容器在离子膜法烧碱装置中的应用   总被引:1,自引:0,他引:1  
1离子膜法烧碱装置中的压力容器压力容器在离子膜法烧碱的主要工序均有应用,应用较多的是外压容器中的低压容器(0.1~1.6MPa),在外压容器中,当容器的内压力小于一个绝对大气压(约0.1 MPa)时即为真空容器。离子膜法烧碱装置中的压力容器分为换热压力容器、分离压力容器、储存压力  相似文献   

9.
介绍了膜法除硝的目的、工作原理、工艺流程,对膜法除硝运行情况进行了总结,并对膜法除硝与钡法除硝工艺进行了经济效益对比。  相似文献   

10.
“九五”氯碱工业技术前景   总被引:2,自引:0,他引:2  
张有谟 《化工时刊》1996,10(1):10-13
离子膜法氯碱生产由于“节能、优质、无污损、成本较低”等特点,日益受到世界各地关注。本文介绍了我国氯碱工业的生产现状,以及对2000年的前景估测,侧重论及膜法的发展规划设想,以及氯气产品的平衡现状及前景。  相似文献   

11.
The scientific community and industrial companies have discovered significant enzyme applications to plant material. This rise imparts to changing consumers’ demands while searching for ‘clean label’ food products, boosting the immune system, uprising resistance to bacterial and fungal diseases, and climate change challenges. First, enzymes were used for enhancing production yield with mild and not hazardous applications. However, enzyme specificity, activity, plant origin and characteristics, ratio, and extraction conditions differ depending on the goal. As a result, researchers have gained interest in enzymes’ ability to cleave specific bonds of macroelements and release bioactive compounds by enhancing value and creating novel derivatives in plant extracts. The extract is enriched with reducing sugars, phenolic content, and peptides by disrupting lignocellulose and releasing compounds from the cell wall and cytosolic. Nonetheless, depolymerizing carbohydrates and using specific enzymes form and release various saccharides lengths. The latest studies show that oligosaccharides released and formed by enzymes have a high potential to be slowly digestible starches (SDS) and possibly be labeled as prebiotics. Additionally, they excel in new technological, organoleptic, and physicochemical properties. Released novel derivatives and phenolic compounds have a significant role in human and animal health and gut-microbiota interactions, affecting many metabolic pathways. The latest studies have contributed to enzyme-modified extracts and products used for functional, fermented products development and sustainable processes: in particular, nanocellulose, nanocrystals, nanoparticles green synthesis with drug delivery, wound healing, and antimicrobial properties. Even so, enzymes’ incorporation into processes has limitations and is regulated by national and international levels.  相似文献   

12.
Anaphylaxis is a severe, acute, life-threatening multisystem allergic reaction resulting from the release of a plethora of mediators from mast cells culminating in serious respiratory, cardiovascular and mucocutaneous manifestations that can be fatal. Medications, foods, latex, exercise, hormones (progesterone), and clonal mast cell disorders may be responsible. More recently, novel syndromes such as delayed reactions to red meat and hereditary alpha tryptasemia have been described. Anaphylaxis manifests as sudden onset urticaria, pruritus, flushing, erythema, angioedema (lips, tongue, airways, periphery), myocardial dysfunction (hypovolemia, distributive or mixed shock and arrhythmias), rhinitis, wheezing and stridor. Vomiting, diarrhea, scrotal edema, uterine cramps, vaginal bleeding, urinary incontinence, dizziness, seizures, confusion, and syncope may occur. The traditional (or classical) pathway is mediated via T cells, Th2 cytokines (such as IL-4 and 5), B cell production of IgE and subsequent crosslinking of the high affinity IgE receptor (FcεRI) on mast cells and basophils by IgE-antigen complexes, culminating in mast cell and basophil degranulation. Degranulation results in the release of preformed mediators (histamine, heparin, tryptase, chymase, carboxypeptidase, cathepsin G and tumor necrosis factor alpha (TNF-α), and of de novo synthesized ones such as lipid mediators (cysteinyl leukotrienes), platelet activating factor (PAF), cytokines and growth factors such as vascular endothelial growth factor (VEGF). Of these, histamine, tryptase, cathepsin G, TNF-α, LTC4, PAF and VEGF can increase vascular permeability. Recent data suggest that mast cell-derived histamine and PAF can activate nitric oxide production from endothelium and set into motion a signaling cascade that leads to dilatation of blood vessels and dysfunction of the endothelial barrier. The latter, characterized by the opening of adherens junctions, leads to increased capillary permeability and fluid extravasation. These changes contribute to airway edema, hypovolemia, and distributive shock, with potentially fatal consequences. In this review, besides mechanisms (endotypes) underlying IgE-mediated anaphylaxis, we also provide a brief overview of IgG-, complement-, contact system-, cytokine- and mast cell-mediated reactions that can result in phenotypes resembling IgE-mediated anaphylaxis. Such classifications can lead the way to precision medicine approaches to the management of this complex disease.  相似文献   

13.
以中低温煤焦油轻油和重油为实验原料,采用常压蒸馏获得170~200℃、200~240℃、240~270℃、270~300℃、300~320℃、320~340℃、340~360℃和360~390℃煤焦油馏分油;利用配有油品加氧制冷进样系统的ICP-OES测定了21种微量元素在馏分油中的含量,考察了不同馏分油中元素的分布情况。研究表明:在原煤焦油中,未发现Ag、Mg、Mo、Na、Ni、Fe、Mn、Cr及Ti元素,含量较高的元素有Sn、P、Al、Pb、Si,其中Sn元素在轻油和重油中的含量分别为11.78μg/g和14.04μg/g;在所有馏分油中,未发现Al、Mo、Fe、Mn、Cr及Ti元素,含量比较高的元素有Si、Sn、Na、Zn、Pb,特别是Si、Na、Sn、Zn、Ni、Pb及B元素可以有效富集于馏分油中。可能的原因是Ca、Fe、Mg、Al等金属以不同的盐类形态存在,在煤焦油脱水及<170℃蒸馏过程中,这些金属盐类会被部分带出,导致其在馏分油中的含量未富集或未检出;通过关联金属元素在馏分油中的分布与其组成的关系,馏分油中元素的分布可能与酚类化合物、杂环化合物和蒸馏温度等相关。酚类化合物及杂环化合物可能与Ag、B、Cu、Mo、Sn、Na、Zn、Ca、Pb等金属形成络合物或卟啉配合物,蒸馏温度一方面可以破坏Sn、Cd、Pb、Zn、Cu、Ca、Pb等元素在馏分油中的结合力,另一方面也可以促进这些元素与馏分油中的含氧、含氮等化合物更好地发生化合反应,进而影响金属元素在馏分油中的含量分布。  相似文献   

14.
15.
This article summarizes and reviews the various preparation methods, physical properties, and potential applications of one-dimensional nanostructures of conjugated polyaniline (PANI), polypyrrole (PPY) and poly(3,4-ethylenedioxythiophene) (PEDOT). The synthesis approaches include hard physical template method, soft chemical template method, electrospinning, and lithography techniques. Particularly, the electronic transport (e.g., electrical conductivity, current-voltage (I-V) characteristics, magnetoresistance, and nanocontact resistance) and mechanical properties of individual nanowires/tubes, and specific heat capacity, magnetic susceptibility, and optical properties of the polymer nanostructures are presented with emphasis on size-dependent behaviors. Several potential applications and corresponding challenges of these nanofibers and nanotubes in chemical, optical and bio-sensors, nano-diodes, field effect transistors, field emission and electrochromic displays, super-capacitors and energy storage, actuators, drug delivery, neural interfaces, and protein purification are also discussed.  相似文献   

16.
松香是一类产量丰富、价格低廉的可再生林产资源,被广泛地应用于食品、农业、橡胶、油墨、涂料等领域。松香的三环二萜结构具有超强的疏水性,通过催化异构、Diels-Alder加成等手段引入亲水基团可制备高附加值、易生物降解的绿色表面活性剂。本文从阴离子、阳离子、非离子和两性离子表面活性剂4个大类对松香基表面活性剂应用的文献及专利进行综述,重点分析了羧酸盐、磺酸盐、硫酸盐和磷酸盐4种阴离子型表面活性剂和季铵盐阳离子型表面活性剂,多元醇型和聚氧乙烯型非离子表面活性剂,以及甜菜碱型和氧化胺型两性离子表面活性剂。剖析松香基表面活性剂产业化开发的新技术及新产品概况,提出松香基表面活性剂替代传统表面活性剂的潜在应用领域。同时,对松香基表面活性剂的研究发展与产业化发展进行了评价与展望。  相似文献   

17.
Separation and purification techniques are applied in many important fields, such as in the medical, chemical, metallurgical, environmental, and pharmaceutical industries. Recent advances in separation science and the urgent need for highly selective purification have necessitated a rapid progress with respect to the reagents, chemicals, and surfactants used in separation processes to attain a high efficiency and selectivity. Polymeric materials have attracted considerable interest, and they have been widely used as extractants, catalysts, and modifiers, in separation and purification processes. This review outlines the recent advances in the use of novel polymers, natural and synthetic, in different separation and purification techniques. Various separation techniques such as chromatography, crystallization, precipitation, distillation, electrophoresis, filtration, and mineral processing methods are discussed, and the polymers used in each method are described in terms of their properties, structure, and function. The application of polymers shows great promise in achieving a highly efficient separation, especially in the areas of membrane separation and water purification. The rational design of new multifunctional polymers with triggered functions presumably presents new opportunities for the development of advanced separation methods.  相似文献   

18.
Shifeng Dai  Dexin Han 《Fuel》2006,85(4):456-464
Coals from Luquan, Yunnan Province, China, have high contents of cutinite and microsporinite, with an average of 55 and 33.5 vol%, respectively, (on a mineral-free basis). The coals are classified as cutinitic liptobiolith, sporinite-rich durain, cutinite-rich durain, and sporinitic liptobiolith. These four liptinite-rich coals are often interlayered within the coal bed section and vary transversely within the coal bed. The vitrinite content varies from as low as 1.6-20.5% (mineral-free basis), and it is dominated by collodetrinite, collotelinite, and corpogelinite. The maceral composition may be attributed to the type of the peat-forming plant communities. Moreover, the Luquan coals are characterized by high contents of volatile matter, hydrogen, and oxygen, and the high values of the atomic hydrogen to carbon ratio as a result of the maceral composition. As compared with the common Chinese coals and the upper continental crust, the Luquan coals are enriched in Li, B, Cu, Ga, Se, Rb, Mo, Ba, Pb, Bi, and U, with averages of 99.9, 250, 111, 24.4, 4.55, 130, 58.8, 1276, 162, 3.85, and 34.1 μg/g, respectively. The SEM-EDX results show that V, Cr, Ga, and Rb occur mainly in clay minerals, and Cu and Pb are associated with clay minerals and pyrite, and Mo and U are mainly in clay minerals and organic matter. Barite and clay minerals are the main carrier of barium. The high B and U contents are probably resulted from deep seawater influence during coal formation.  相似文献   

19.
The effects of extraction temperature and preservation method on the functional properties of soy protein isolate (SPI) were determined. Four extraction temperatures (25, 40, 60, and 80 °C) were used to produce SPI and yields of solids and protein contents were determined. Three preservation methods were also tested (spray-drying, freeze-drying, and freezing–thawing) and compared to fresh (undried) samples for each extraction temperature. No differences in yields of solids and protein were observed among SPIs extracted at 25, 40, and 60 °C; however, SPI extracted at 80 °C yielded significantly less solids and protein. Extraction temperature significantly affected SPI functionality. As extraction temperature increased, solubility and emulsification capacity decreased; surface hydrophobicities, emulsification activities and stabilities, and dynamic viscosities increased; and foaming properties improved. Preservation method also significantly affected SPI functionality. Drying method did not affect the denaturation enthalpies of SPIs, but spray-dried SPIs had higher solubilities, surface hydrophobicities, and emulsification stabilities, and lower viscosities, emulsification activities and rates of foaming than freeze-dried SPI exhibited. Emulsification and foaming capacities and foaming stabilities were similar for both methods of drying. There was significant interaction between extraction temperature and preservation method for all functional properties except emulsification capacity.  相似文献   

20.
Laccases (Lac) and tyrosinases (TYR) are mild oxidants with a great potential in research and industry. In this work, we review recent advances in their use in organic synthesis. We summarize recent examples of Lac-catalyzed oxidation, homocoupling and heterocoupling, and TYR-catalyzed ortho-hydroxylation of phenols. We highlight the combination of Lac and TYR with other enzymes or chemical catalysts. We also point out the biological and pharmaceutical potential of the products, such as dimers of piceid, lignols, isorhamnetin, rutin, caffeic acid, 4-hydroxychalcones, thiols, hybrid antibiotics, benzimidazoles, benzothiazoles, pyrimidine derivatives, hydroxytyrosols, alkylcatechols, halocatechols, or dihydrocaffeoyl esters, etc. These products include radical scavengers; antibacterial, antiviral, and antitumor compounds; and building blocks for bioactive compounds and drugs. We summarize the available enzyme sources and discuss the scalability of their use in organic synthesis. In conclusion, we assume that the intensive use of laccases and tyrosinases in organic synthesis will yield new bioactive compounds and, in the long-term, reduce the environmental impact of industrial organic chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号