共查询到19条相似文献,搜索用时 62 毫秒
1.
2.
重叠社区结构是复杂网络的一种重要的特征,提出了一种局部扩展的遗传优化重叠社区发现(LEGAOCD)。借鉴局部扩展的重叠社区发现方法的思想,将少数的核心节点构成模体;同时,利用了三角形模体来判断社区的稳定性度量问题,从而量化社区结构稳定性;然后通过改进的遗传优化算法策略分配它们应归属的社区;最后通过两个评价目标函数得到高质量的重叠社区结构。该算法在数据集上与经典的CPM算法、COPRA算法作比较,实验结果表明,LEGAOCD算法在检测重叠社区结构和重叠节点方面具有较优的性能。 相似文献
3.
挖掘复杂网络的重叠社区结构对研究复杂系统具有重要的理论和实践意义。提出一种基于局部扩展优化的重叠社区识别算法。首先基于网络节点的聚集系数筛选种子节点,选取不相关的、局部聚集系数大的种子作为初始社区;然后采用贪心策略扩展初始社区,得到局部连接紧密的自然社区;最后检测并合并相似的社区,获得高覆盖率的重叠社区结构。在人工生成网络和真实网络数据集上的实验结果表明,与现有的基于局部扩展的代表性重叠社区发现算法相比,所提算法能在稀疏程度不同的网络上发现更高质量的重叠社区。 相似文献
4.
针对多标签传播重叠社区发现算法(COPRA)存在的社区划分结果准确性低和鲁棒性差的问题,提出一种基于成对约束的多标签传播重叠社区发现方法(PCMLPA).以主动查找、扩展的方式引入成对约束指导社区发现,提高社区划分结果的准确性.在标签传播的过程中,根据节点影响力大小确定节点更新顺序,根据节点的相似性度量确定邻居节点的遍... 相似文献
5.
语义社会网络(Semantic social network, SSN)是一种由信息节点及链接关系构成的新型复杂网络, 为此以节点邻接关系为挖掘对象的传统社会网络社区发现算法无法有效处理语义社会网络重叠社区发现问题. 由此提出标签传播的语义重叠社区发现算法, 该算法以标签传播算法(Latent Dirichlet allocation, LDA)模型为语义信息模型, 利用Gibbs取样法建立节点语义信息到语义空间的量化映射; 提出可度量节点间相似性的主成分 (Semantic coherent neighborhood propinquity, SCNP)模型和语义影响力(Semantic impact, SI)模型; 以SCNP作为标签传播的权重, 以SI 作为截断值的参数, 提出一种改进的Semantic-LPA (Semantic label propagation algorithm)算法; 提出可度量语义社区发现结果的语义模块度模型, 并通过实验分析, 验证了算法及语义模块度模型的有效性及可行性. 相似文献
6.
针对COPRA算法因在标签更新过程采用随机策略而导致的重叠社区划分结果不稳定问题,本文对COPRA算法进行了改进,提出了一种简单的重叠社区发现算法.该算法仍采用同步的方式传播标签,但只在以边缘节点为中心的桥梁节点群内进行标签传播,以此提升发现重叠社区的速度.该算法还引入了节点连接社区强度,利用其降低标签更新过程中的随机... 相似文献
7.
随着社区规模的不断扩大,基于标签传播思想的重叠社区发现算法得到较大发展。经典重叠社区发现算法虽然很好的利用了标签随机传播特性实现了重叠社区发现,但是也导致该算法输出结果很不稳定、社区生成质量较差。本文的主要贡献在于,采用最新的ClusterRank为所有节点排序降低随机性带来的结果稳定性差的弊端;引入最大社区节点数以控制最大社区节点数目防止远大于其他社区的Monster出现。采用真实数据集和人工网络验证,结果证实,改良后算法可行有效。 相似文献
8.
在社交网络中,社区和圈子均表现为一组内部连接相对紧密的节点,但后者规模较小。圈子是重要的局部社区信息,利用这一特点有助于进行社区发现。然而,现有的大部分基于标签传播的社区发现算法并没有考虑圈子的信息。为此,提出一种基于局部强化的多标签传播(LSMLP)社区发现算法。给出圈子的定义,提出一种基于圈子信息的迭代多标签传播策略,并从每个节点的多个标签中选择归属系数最大的标签作为其从属的临时社区。采用两步优化方法使模度最大化。在真实网络的数据实验结果表明,与已有的社区发现算法相比,LSMLP算法能更高效地发现社区。 相似文献
9.
针对多标签传播重叠社区发现算法COPRA存在的的随机性强、鲁棒性差等问题,提出一种基于多标签传播思想的重叠社区发现算法。该算法通过LeaderRank算法来量化网络中节点的重要性,再根据量化值大小对节点进行团扩展,得到可重叠的最具重要性的粗糙团,分别对粗糙团和非粗糙团中的节点进行标签初始化,再通过合理的标签迭代顺序和改进的标签删选策略进行标签更新,直到达到标签传播的终止条件结束迭代过程。在人工网络图和真实数据集上进行实验,结果表明所提算法不仅有效地增强了社区发现结果的稳定性,同时提高了准确率。 相似文献
10.
社区发现问题对于研究复杂网络的特性具有重要作用。蚁群算法由于其采用分布式正反馈并行机制,具有较强的鲁棒性和稳定性,被越来越频繁地应用于社区发现领域。针对蚁群算法求解社区发现存在求解精度低、收敛速度慢的问题,提出一种基于标签传播的蚁群优化算法(BLP_ACO)。采用一种新的解向量表达方式,其中每个节点位置存放该节点所属社区的标签。在解的构造阶段提出基于节点凝聚性的蚂蚁转移策略,降低蚂蚁转移过程中的随机性,从而提高算法的精确度;将标签传播思想引入到蚁群搜索过程,使算法快速收敛。在解的优化阶段采用基于模块度优化的合并策略,进一步提高算法的求解精度;更新信息素时对所有处于社区内部的边滞留信息素。在真实网络和LFR基准网络上验证,结果表明该算法能够准确高效地挖掘出社区结构。 相似文献
11.
Balanced Multi-Label Propagation for Overlapping Community Detection in Social Networks 总被引:1,自引:1,他引:1
下载免费PDF全文

武志昊 林友芳 Steve Gregory 万怀宇School of Computer Information Technology Beijing Jiaotong University 田盛丰 《计算机科学技术学报》2012,27(3):468-479
In this paper,we propose a balanced multi-label propagation algorithm(BMLPA) for overlapping community detection in social networks.As well as its fast speed,another important advantage of our method is good stability,which other multi-label propagation algorithms,such as COPRA,lack.In BMLPA,we propose a new update strategy,which requires that community identifiers of one vertex should have balanced belonging coefficients.The advantage of this strategy is that it allows vertices to belong to any number of communities without a global limit on the largest number of community memberships,which is needed for COPRA.Also,we propose a fast method to generate rough cores,which can be used to initialize labels for multi-label propagation algorithms,and are able to improve the quality and stability of results.Experimental results on synthetic and real social networks show that BMLPA is very efficient and effective for uncovering overlapping communities. 相似文献
12.
基于多态蚁群优化的图像边缘检测 总被引:2,自引:0,他引:2
为了获得更好的边缘检测效果,提出了多态蚁群优化的边缘检测算法。通过侦察蚁的局部搜索标记侦察素,在搜索蚁进行全局搜索的过程中辅以侦察素的作用,提高算法的寻优能力。实验表明,算法在能够提取出弱边缘的情况下,有效地抑制了噪声和纹理信息。 相似文献
13.
图像边缘携带了图像的大部分主要信息。通过对图像进行边缘检测不仅能有效地提取图像信息降低计算的复杂度而且是图像测量、图像分割、图像压缩、模式识别等图像处理的基础。本文尝试将蚁群优化算法(Ant Colony Optimization, ACO)用于图像边缘检测,通过选取经典house图像和SAR机场图像设置阈值进行自适应边缘提取,实现了边缘的精确检测。实验结果显示,该算法能够有效地提取图像目标的轮廓信息,很好保持图像纹理,具有理想的抗干扰性能,保证了检测结果的准确性。 相似文献
14.
本文充分利用社会网络中存在普适幂律分布的特性,提出了基于核心节点的局部社区发现算法(EALCN),利用改进的PageRank 进行节点排序,然后利用网络中的局部信息对局部目标函数进行优化,从初始的种子节点不断优化后获得目标函数,最终获取局部社区,仿真实验表明,该算法利用少量的局部信息便能够比较快速的找出社区结构,具有较高的执行效率。 相似文献
15.
针对重叠社区发现准确率提升问题,提出了一种基于圈结构的LPANNI优化算法CLPANNI(cycle label propagation algorithm with neighbor node influence)。该算法通过挖掘节点的最小圈信息,依据圈比指标衡量节点的重要性并按升序进行标签更新,增加了标签传播过程的稳定性,按照邻居节点影响力大小加权接收邻居节点传递的标签。与四种基准算法在NMI_LFK、NMI_MGH、MOV指标下进行测试比较,CLPANNI算法在社区发现准确率方面表现较好。实验结果表明,该算法能够有效探测网络重叠社团结构,发现网络的紧密子团,识别的社团分布与真实网络结构更为接近。 相似文献
16.
针对蚁群优化算法在进行全局最优解搜索时容易陷入局部最优解和收敛速度缓慢等缺陷,提出了一种有效求解全局最优解搜索问题的重叠蚁群优化算法。该算法通过设置多个重叠的蚁群系统,并对每一个蚁群初始化不同的参数,之后在蚁群之间进行信息素的动态学习,增强了不同蚁群对最优解的开采能力,避免了算法出现早熟现象。仿真实验结果表明,重叠蚁群优化算法在避免陷入局部最优解方面具有良好的效果,是一种提高蚁群算法性能的有效的改进算法。 相似文献
17.
Heli Sun Jiao Liu Jianbin Huang Guangtao Wang Xiaolin Jia Qinbao Song 《Computational Intelligence》2017,33(2):308-331
Community detection is an important methodology for understanding the intrinsic structure and function of complex networks. Because overlapping community is one of the characteristics of real‐world networks and should be considered for community detection, in this article, we propose an algorithm, called link‐based label propagation algorithm (LinkLPA), to detect overlapping communities. Because the link partition is conceptually natural for the problem of overlapping community detection, LinkLPA first transforms node partition problem into link partition problem and employs a new label propagation algorithm with preference on links instead of nodes to detect communities due to the simplicity and efficiency of label propagation algorithm. Then the proposed LinkLPA performs a postprocessing to refine the detected overlapping communities by avoiding over‐overlapping and incorrect partition of weak ties. Experimental results on a large number of real‐world and synthetic networks show that the proposed method achieves high accuracy on detecting overlapping communities in networks. 相似文献
18.
Jinhuan Ge Heli Sun Chenhao Xue Liang He Xiaolin Jia Hui He Jiyin Chen 《Computational Intelligence》2021,37(1):484-510
Traditional community detection methods in attributed networks (eg, social network) usually disregard abundant node attribute information and only focus on structural information of a graph. Existing community detection methods in attributed networks are mostly applied in the detection of nonoverlapping communities and cannot be directly used to detect the overlapping structures. This article proposes an overlapping community detection algorithm in attributed networks. First, we employ the modified X‐means algorithm to cluster attributes to form different themes. Second, we employ the label propagation algorithm (LPA), which is based on neighborhood network conductance for priority and the rule of theme weight, to detect communities in each theme. Finally, we perform redundant processing to form the final community division. The proposed algorithm improves the X‐means algorithm to avoid the effects of outliers. Problems of LPA such as instability of division and adjacent communities being easily merged can be corrected by prioritizing the node neighborhood network conductance. As the community is detected in the attribute subspace, the algorithm can find overlapping communities. Experimental results on real‐attributed and synthetic‐attributed networks show that the performance of the proposed algorithm is excellent with multiple evaluation metrics. 相似文献
19.
针对重叠社团检测准确率提升问题,提出了一种基于改进蚁群算法的新型重叠社团检测算法。该算法包含位置初始化、运动和后处理三个阶段,分别通过初始位置识别与标签列表存储、基于节点间相似度的启发式信息重定义、合作保持标签列表等方式,使算法在合成数据集与现实世界数据集中的重叠社团与节点检测方面具有更好的性能。实验结果表明,在合成网络与现实世界网络平台上使用不同检测算法,提出方法对重叠社团与重叠节点的检测准确率较传统检测方法更高,因而对重叠社区检测问题求解与理解网络功能结构具有重要的参考与借鉴意义。 相似文献