首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
许朝  孟凡荣  袁冠  李月娥  刘肖 《计算机应用》2019,39(11):3178-3183
为解决兴趣点(POI)推荐不准确和效率低的问题,深入分析社交因素和地理位置因素的影响,提出了一种融合地点影响力的POI推荐算法。首先,为了解决签到数据稀疏的问题,将2-度好友引入协同过滤算法中构建了社交影响模型,通过计算经历和好友相似度获取2-度好友对用户的社交影响;其次,深入考虑地理位置因素对POI推荐影响,在对社交网络分析的基础上构造了地点影响力模型,通过PageRank算法发现用户影响力,结合POI被签到次数计算地点影响力,获取准确的整体位置偏好,并使用核密度估计方法对用户签到行为建模和获取个性化地理位置特征;最后,融合社交模型和地理位置模型提高推荐准确性,并通过构造POI推荐候选集来提高推荐效率。在Gowalla和Yelp签到数据集上实验,结果表明所提算法能够快速完成POI推荐,在准确率和召回率指标上明显优于融合时间因素的位置推荐(LRT)和融合地理社交因素的个性化位置推荐(iGSLR)算法。  相似文献   

2.
随着基于位置的社交网络(LBSN)迅速发展,作为缓解信息过载的有效手段,兴趣点(POI)推荐备受关注.由于用户签到数据是隐式反馈数据,且十分稀疏,为了有效地从用户签到数据中捕获用户POI偏好,提出了一个基于地理偏好排序的POI混合推荐模型.首先,考虑用户签到数据的隐式反馈特性及用户活动的空间约束,利用传统贝叶斯个性化排序(BPR)模型计算POI距离对POI排序的影响,提出加权BPR(GWBPR)模型;然后,针对用户签到数据的稀疏性,融合GWBPR模型和逻辑矩阵分解(LMF)模型,提出混合模型GWBPR-LMF.在两个真实数据集Foursquare和Gowalla上的实验结果表明,GWBPR-LMF模型的性能优于BPR、LMF、SAE-NAD(Self-Attentive Encoder and Neighbor-Aware Decoder)等对比模型.与较优的对比模型SAE-NAD相比,GWBPR-LMF模型的POI推荐的精确率、召回率、F1值、平均精度均值(mAP)、归一化折损累积增益(NDCG)在数据集Foursquare上分别平均提升了44.9%、57.1%、78.4%、55.3%和40.0%,在数据集Gowalla上分别平均提升了3.0%、6.4%、4.6%、11.7%和4.2%.  相似文献   

3.
4.
针对现有的位置社交网络研究工作对兴趣点相关的用户语义位置信息挖掘不够充分,且大多推荐算法忽略了兴趣点所在区域对推荐结果的影响,提出了一种新型兴趣点推荐模型(USTTGD)。首先采用分割时间的潜在狄利克雷分配主题模型(latent Dirichlet allocation,LDA),基于签到记录中的语义位置信息挖掘时间主题下的用户时间偏好,然后将兴趣点所处区域划分为网格,以评估区域影响;接着应用边缘加权的个性化PageRank(edge-weighted personalized PageRank,EwPPR)来建模兴趣点之间的连续过渡;最后将用户时间偏好、区域偏好和连续过渡偏好融合为一个统一的推荐框架。通过在真实数据集上实验验证,与其他传统推荐模型相比,USTTGD模型在准确率和召回率上有了显著的提升。  相似文献   

5.
在基于位置的社交网络中,兴趣点实时推荐数据和用户签到数据存在高稀疏性问题。提出一种基于时间效应的混合推荐模型。通过用户潜在兴趣点数据模型计算用户时间行为影响分数和地理位置影响分数,并用线性统一模型进行处理,选取Top S个兴趣点作为用户的潜在兴趣点。将用户的潜在签到记录引入基于时间效应的矩阵分解模型中,考虑时间差异性和连续性对推荐结果的影响,在此基础上进行优化求解,提出推荐策略。实验结果表明,与LRT模型、UTE+SE模型相比,该模型的推荐效果较好,其准确率和召回率最高可达0.103 4和0.111 8。  相似文献   

6.
邵长城  陈平华 《计算机应用》2019,39(5):1261-1268
基于位置的社交网络(LBSN)蓬勃发展,带来了大量的兴趣点(POI)数据,加速了兴趣点推荐的研究。针对用户-兴趣点矩阵极端稀疏造成的推荐精度低和兴趣点特征缺失问题,通过融合兴趣点的标签、地理、社交、评分以及图像等信息,提出了一种融合社交网络和图像内容的兴趣点推荐方法(SVPOI)。首先分析兴趣点数据集,针对地理信息,利用幂律概率分布构造距离因子;针对标签信息,利用检索词频率构造标签因子;融合已有的历史评分数据,构造新的用户-兴趣点评分矩阵。其次利用VGG16深度卷积神经网络模型(DCNN)识别兴趣点图像内容,构造兴趣点图像内容矩阵。然后根据兴趣点数据的社交网络信息,构造用户社交矩阵。最后,利用概率矩阵分解(PMF)模型,融合用户-兴趣点评分矩阵、图像内容矩阵、用户社交矩阵,构成SVPOI兴趣点推荐模型,生成兴趣点推荐列表。大量的真实数据集上的实验结果表明,与PMF、SoRec、TrustMF、TrustSVD推荐算法相比,SVPOI推荐的准确度均有较大提升,其平均绝对误差(MAE)和均方根误差(RMSE)两项指标比最优的TrustMF算法分别降低了5.5%和7.82%,表明SVPOI具有更好的推荐效果。  相似文献   

7.
目前基于协同过滤的兴趣点推荐算法能够获得较好的推荐效果,但是当用户外出远离其常驻地时,推荐效果急剧下降,主要原因是用户的签到记录主要集中在其常驻地周围,而对其他兴趣点的签到行为较少,此时不能准确计算用户兴趣。因此提出了一种基于主题模型的兴趣点推荐算法,在推荐过程中同时考虑了用户的偏好分布和兴趣点的主题分布,使得当用户在新的兴趣点时,也能获得较好的推荐。实验证明,该方法不仅能够缓解推荐数据的稀疏性问题,而且与其他方法相比有更高的推荐准确率。  相似文献   

8.
涂飞 《智能系统学报》2019,14(4):779-786
基于位置社交网络的兴趣点推荐越来越受到工业界和学术界的关注。由于用户签到数据集的稀疏性以及签到地理位置的聚集性,使得目前的推荐算法效率普遍不高,特别是当用户外出到新的地点时,推荐效果更是急剧下降。因此本文提出了一种基于用户区域内容主题的多特征联合推荐算法(UCRTM),以隐主题模型为基础,在统一的框架下利用隐含因子关联性融合了用户的偏好、兴趣点的内容以及兴趣点所属地理区域主题等信息来进行推荐,使得用户无论身处何地,都能获得理想的推荐服务。本文在两种真实的数据集上进行了实验,结果表明该方法不仅能够克服数据的稀疏性以及弱语义性等问题,而且与其他方法相比具有更高的推荐准确率。  相似文献   

9.
《软件》2017,(11):85-89
基于位置的社交网络(Location Based Social Networks,LBSN)的相关服务推荐越来越多,而兴趣点(Point Of Interest,POI)推荐作为LBSN相关服务中的一项个性化推荐也备受关注,越来越多的学者投入研究。目前,各种基于位置的推荐算法层出不穷,但由于LBSN中的数据极度稀疏的原因,导致许多算法推荐精度不高,本文提出了一种基于用户活动区域划分的元路径推荐算法。首先,根据用户签到以及点评的地点呈现区域性,将用户活动区域分为频繁活动区域和不经常活动区域,根据LBSN结构特征构建用户-活动区域和活动区域-兴趣点之间的二分图模型,其次引入元路径,计算从用户到兴趣点的实例路径的关联度,最后根据关联度大小生成推荐列表。结果表明,该算法较传统的LBSN推荐算法有更好的推荐效果。  相似文献   

10.
针对位置社交网络(location-based social networks,LBSN)中连续兴趣点(point-of-interest,POI)推荐系统面临的数据稀疏性、签到数据的隐式反馈属性、用户的个性化偏好等挑战,提出一种融合时空信息的连续兴趣点推荐算法。该算法将用户的签到行为建模为用户—当前兴趣点—下一个兴趣点—时间段的四阶张量,并利用LBSN中的地理信息定义用户访问兴趣点的地理距离偏好,最后采用BPR(Bayesian personalized ranking)标准优化目标函数。实验结果表明该算法相比其他先进的连续兴趣点推荐算法具有更好的推荐效果。  相似文献   

11.
兴趣点推荐是在基于位置社会网络(location-based social network, LBSN)中流行起来的一种全新形式的推荐.利用LBSN所包含的丰富信息进行个性化推荐能有效增强用户体验和提高用户对LBSN的依赖度.针对无显示用户偏好、兴趣非一致性和数据稀疏性等挑战性问题,研究一种针对LBSN的双重细粒度POI推荐策略,即一方面将用户的全部历史签到信息以小时为单位细分为24个时间段,另一方面将每个POI细分为多个潜在主题及其分布,同时利用用户的历史签到信息和评论信息挖掘出用户在不同时间段的主题偏好,以实现POI的Top-N推荐.为实现该推荐思路,首先,根据用户的评论信息,运用LDA模型提取出每个POI的主题分布;然后,对于每个用户,将其签到信息划分到24个时间段中,通过连接相应的POI主题分布映射出用户在不同时间段对每个主题的兴趣偏好.为解决数据稀疏问题,运用高阶奇异值分解算法对用户-主题-时间三阶张量进行分解,获取用户在每个时间段对每个主题更为准确的兴趣评分.在真实数据集上进行了性能测试,结果表明所提出的推荐策略具有较好的推荐效果.  相似文献   

12.
信息过载是当前各类网络中存在的普遍问题,社交网络中通过推荐算法为用户推荐感兴趣的内容,但该类算法并不适用于学习网络中存在特定逻辑联系的知识点推荐.结合社交网络及LBSN网络中的兴趣点推荐算法,提出了一种面向学习网络相关知识点的改进LBSN推荐算法,通过学习网络中的相似用户计算及知识路径发现,为用户推荐当前学习相关的近邻...  相似文献   

13.
协同过滤算法一般根据用户的评价信息来推测用户的喜好,但受到数据稀疏问题的影响,很多时候无法得到较为理想的推荐结果;除此之外,一般协同推荐算法忽略了用户兴趣的动态变化;文中提出的算法主要融合了相似度传递、用户兴趣迁移、隐语义模型等用以解决上述问题。首先提出了基于项目相似度的协同推荐算法。该算法深入研究了改进的余弦相似度方法,在执行过程中首先需要对项目进行信任关系建模,基于此来传递相似度,然后将这两部分相似度关系进行加权得到新的项目相似关系,可以将其应用到项目的评分中。其次,提出了基于用户兴趣迁移的隐语义模型推荐算法。该算法引入时间函数,重构用户的兴趣模型,实现对传统模型的修正,然后再使用梯度下降法来求解。最后,采用线性融合的办法,将以上两种算法进行融合。实验对比结果表明,混合推荐算法的推荐准确率较原先的算法有了较大的提高,因为它可以对丢失的信息进行补充,对于用户兴趣的变化能够较好的适应,同时大大弱化了数据的稀疏导致的一系列负面影响。  相似文献   

14.
推荐系统本质上是一种信息检索工具,它检索出有用信息并推荐给特定的用户.组推荐系统通过不同的融合策略融合群组偏好,支持群组用户访问当前的热门兴趣点.传统组推荐模型没有将时间因子对用户选择兴趣点的影响计算在内,且传统协同过滤推荐算法往往对数据的稀疏性较为敏感.本文提出一个混合推荐模型(AGRT),综合K-均值聚类算法和隐语义模型(LFM)技术,将其应用于群组兴趣点.考虑到用户在不同时间点的不同兴趣偏好,AGRT利用K-means算法对用户数据集合基于时间点聚类,划分为不同的簇,在与当前推荐时间最为接近的用户数据簇上进行兴趣点推荐,采用LFM隐语义模型对用户数据进行矩阵分解,通过将分解矩阵再次相乘获得用户对未评分地点的评分数据,解决用户数据稀疏性的问题.实验结果表明,AGRT模型在低相似度(随机)群组和高相似度群组评测条件下下较文献[3]中提出的HAaB提高了5. 19%和2. 06%,具有有效的改进.  相似文献   

15.
手势识别除了为触屏智能设备提供人机交互,还可以成为一种新的用户信息收集方式,用以优化基于个人移动终端的购物推荐系统。文章在现有研究基础之上,讨论了手势识别数据用于收集用户兴趣点信息的可能性和有效性,并以智能手机为例,用两个小样本的实验进行验证,为进一步研究奠定了基础。  相似文献   

16.
尤耀华  吴文琦 《计算机仿真》2020,(2):463-466,475
针对当前算法推荐结果与用户感知兴趣点拟合度低,导致推荐可信度低的问题,提出基于矩阵分解的感知兴趣点智能推荐算法。先在典型的社会网络中,对感知兴趣点推荐问题进行描述;建立感知兴趣点模型,构建用户范围矩阵和感知兴趣点的影响力矩阵,提取出用户对不同感知兴趣点的偏好,随后计算感知兴趣点在不同区域中的影响力,并修正感知兴趣点影响力函数,通过对其权重的计算,获取用户对感知兴趣点的访问次数、时间的总和以及感知兴趣点集合。最后计算感知兴趣点智能推荐时间的复杂度,利用矩阵分解思想最终实现了对感知兴趣点的智能推荐。实验结果表明,提出的算法的推荐结果与用户感知兴趣点的拟合度较高,并且感知兴趣点的推荐可信度也较高,验证了提出算法的有效性。  相似文献   

17.
基于项目之间相似性的兴趣点推荐方法*   总被引:1,自引:1,他引:0  
针对评分数据稀疏的情况下传统相似性计算的不足,提出了一种基于项目之间相似性的协同过滤算法。该算法结合用户对项目的评分和项目之间的兴趣度进行项目之间的相似性计算,在一定程度上减小了评分数据稀疏的负面影响。实验结果表明,该算法在评分数据稀疏的情况下,能使推荐系统的推荐质量明显提高。  相似文献   

18.
近年来,异质网络中的社区发现逐渐成为人们关注的研究热点,然而现有大多数非重叠或重叠的社区发现方法都局限于考虑单一类型的网络结构,而无法适用于包含多模实体及其多维关系的异质网络,基于位置的社交网络(location based social network, LBSN)作为最近兴起的一种新型异质网络,如何有效发现其含有多维关系的复杂社区结构对现有研究来说是一个挑战性的难题.为此,提出了一种融合用户与位置实体及其多维关系的社区发现方法MRNMF(multi-relational nonnegative matrix factorization),该方法通过建立基于非负矩阵分解的联合聚类目标函数,并考虑融入用户社交关系、用户-位置签到关系以及兴趣点特征等多维度的影响因素,能同时获得紧密关联的用户模糊社区与兴趣点聚簇结构,以有效缓解推荐中的数据稀疏问题.在2种真实LBSN数据集上的实验结果表明,所提出的MRNMF方法同时在兴趣点与朋友这双重推荐上比其他传统方法具有更优越的推荐性能.  相似文献   

19.
随着个性化推荐技术的发展,推荐系统面临着越来越多的挑战。传统的推荐算法通常存在数据稀疏性和推荐精度低等问题。针对以上问题,提出了一种融合时间隐语义填充和子群划分的推荐算法K-TLFM(Time Based Latent Factor Model Integrated with k-means)。该算法利用融合时间因素的隐语义模型对原始用户物品评分矩阵缺失项进行填充,避免了用全局平均值或者用户/物品平均值补全矩阵带来的误差,有效缓解了数据稀疏性问题,同时融合时间因素有效地刻画了用户偏好随时间的变化;完成评分矩阵缺失项填充后,基于二分k-means聚类算法将偏好、兴趣特征相似的对象划分到同一个子群中,在目标用户所属的子群中基于选定的协同过滤算法为用户产生推荐列表,提高了推荐效率和准确性。在MovieLens和Netflix数据集上对该算法的推荐性能进行了对比实验,结果表明该算法具有更高的推荐精度。  相似文献   

20.
罗浩  高升  徐蔚然 《软件》2013,(12):142-147
信息推荐系统主要根据已有的用户历史信息来对未知信息进行预测。但用户的活跃度往往使得数据集本身过于稀疏,从而使相关算法产生过拟合问题。跨域推荐算法是为了解决在单域推荐中常遇到的数据稀疏性问题,然而大多数的推荐算法在考虑共享信息时并未考虑单个数据域的个性信息。本文通过矩阵聚类方法来提取矩阵的潜在因式,区别数据集合之间的共享信息和自身信息。通过这种方法来做跨域推荐预测,并在几个现实中的数据集上与现有的一些推荐算法进行比较。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号