首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
《微型机与应用》2019,(10):35-39
推荐系统可以帮助人们在海量的数据中发现所需的有价值的信息。传统的协同过滤推荐算法根据历史数据中用户对项目的各种行为操作构建用户-项目评分矩阵,进而计算相似度,从而预测用户对项目的偏好程度进行推荐。但因为评分数据通常较为稀疏,使得推荐的准确性不高,从而不能很好地对用户进行推荐。针对这个问题,提出一种结合场论理论的随机游走歌曲推荐算法,融合歌曲评分相似度和歌曲基本信息相似度,降低歌曲间综合相似度矩阵的稀疏性,并将物理学中的场论理论和歌曲的重要度结合,构造转移概率矩阵,从而实现歌曲推荐。实验表明,该算法较协同过滤算法的推荐准确性更佳。  相似文献   

2.
推荐是促进诸如社交网络等应用活跃度的重要模式,但 庞大 的节点规模以及复杂的节点间关系给社交网络的推荐问题带来了挑战。随机游走是一种能够有效解决这类推荐问题的策略,但传统的随机游走算法没有充分考虑相邻节点间影响力的差异。提出一种基于FP-Growth的图上随机游走推荐方法,其基于社交网络的图结构,引入FP-Growth算法来挖掘相邻节点之间的频繁度,在此基础上构造转移概率矩阵来进行随机游走计算,最后得到好友重要程度排名并做出推荐。该方法既保留了随机游走方法能有效缓解数据稀疏性等特性,又权衡了不同节点连接关系的差异性。实验结果表明,提出的方法比传统随机游走算法的推荐性能更佳。  相似文献   

3.
何明  刘伟世  魏铮 《计算机科学》2016,43(6):257-262
协同过滤是目前应用最广泛和最成功的推荐技术之一。然而,目前该技术的发展面临着严重的冷启动和稀疏性问题,降低了其推荐质量,因此提出了一种基于信任网络随机游走模型的协同过滤推荐方法。该方法融合了基于信任和项目的协同过滤推荐方法,并引入了信任因子作为引导推荐的重要因素。随机游走模型不仅考虑了信任用户对目标项目的评分,也考虑了他们对与目标项目相似的项目的评分。随着随机游走深度的增加,以相似项目的评分信息来代替目标项目的评分信息的概率也逐渐增大。在Epinions真实数据集上的验证结果表明,该方法在推荐评价指标上比其他算法具有更好的推荐结果。  相似文献   

4.
针对传统物体识别算法中只依赖于视觉特征进行识别的单一性缺陷,提出了一种结合先验关系的物体识别算法。在训练阶段,通过图模型结构化表示先验关系,分别构建了图像-图像、语义-语义两个子图以及两子图之间的联系,利用该图模型建立随机游走模型;在识别阶段,建立待识别图像与随机游走模型中的图像节点和语义节点的关系,在该概率模型上进行随机游走,将随机游走的结果作为物体识别的结果。实验结果证明了结合先验关系的物体识别算法的有效性;提出的物体识别算法具有较强的识别性能。  相似文献   

5.
传统的类别驱动方法只考虑类别间的关联或是将其组织成扁平或层次结构,而项目和类别对应关系复杂,其他信息容易被忽略。针对这个问题提出基于组合类别空间的随机游走推荐算法,更好地组织了项目类别信息、缓解了数据稀疏。首先,建立一个用哈斯图表示的项目组合类别空间,将项目和类别复杂的一对多关系映射成一对一的简单关系,并表示用户上下层次、同层次及跨层次的项目类别间的跳转;接着,定义组合类别空间的语义关系及链接、偏好两种语义距离,更好地定性、定量描述用户动态偏好的变化;然后,结合组合类别空间上用户浏览图的语义关系、语义距离、用户行为跳转、跳转次数、时序、评分等各种信息,利用随机游走建立用户个性化类别偏好模型;最后,根据用户个性化偏好完成基于用户的协同过滤项目推荐。在MovieLens数据集上的实验显示,与基于用户的协同过滤(UCF)、基于类别关联的推荐模型(UBGC和GENC)相比,所提算法推荐的F1-score提高了6~9个百分点,平均绝对误差(MAE)减小了20%~30%;与基于类别层次潜在因子模型(CHLF)相比,所提算法推荐的F1-score提高了10%。实验结果表明,所提算法在排序推荐上优于传统基于类别的推荐算法。  相似文献   

6.
SimRank算法是一种常用的相似性度量模型,它基于图的拓扑结构信息来衡量任意两个对象之间的相似程度。随着数据规模的不断增大,集中式SimRank算法已不适用,而已有的分布式SimRank算法在运行效率和扩展性等方面存在缺陷。针对上述问题,提出了一种两阶段的基于随机游走路径的分布式SimRank算法。第一阶段基于BSP(bulk synchronous parallel)模型建立随机游走路径索引信息,支持新路径的动态添加,并通过阈值过滤尽可能减少生成路径的数量;第二阶段利用第一阶段生成的索引信息,提出了基于MapReduce的分布式SimRank算法。最后,通过实验验证了算法的可行性和有效性。  相似文献   

7.
根据网络结构中的连接关系得到节点的向量表示,进而将节点的向量表示应用于推荐算法可有效提升其建模能力。针对推荐系统中的同质网络,提出结合随机游走的网络表示学习推荐算法。以DeepWalk算法为基础,在随机游走过程中根据节点重要性设定节点游走序列数,并设置终止概率以控制游走长度优化采样结果,在网络表示学习过程中将SkipGram模型融合节点属性信息,同时考虑上下文节点离中心节点的距离获得更准确的推荐结果。实验结果表明,该算法相比DeepWalk、Node2vec等算法具有更高的推荐准确度,并且较好地解决了冷启动问题。  相似文献   

8.
张萌  南志红 《计算机应用》2016,36(12):3363-3368
为了提高推荐算法评分预测的准确度,解决冷启动用户推荐问题,在TrustWalker模型基础上提出一种基于用户偏好的随机游走模型——PtTrustWalker。首先,利用矩阵分解法对社会网络中的用户、项目相似度进行计算;其次,将项目进行聚类,通过用户评分计算用户对项目类的偏好和不同项目类下的用户相似度;最后,利用权威度和用户偏好将信任细化为不同类别下用户的信任,并在游走过程中利用信任用户最高偏好类中与目标物品相似的项目评分进行评分预测。该模型降低了噪声数据的影响,从而提高了推荐结果的稳定性。实验结果表明,PtTrustWalker模型在推荐质量和推荐速度方面相比现有随机游走模型有所提高。  相似文献   

9.
刘思  刘海  陈启买  贺超波 《计算机应用》2017,37(8):2234-2239
现有的基于随机游走链路预测指标在无权网络上的转移过程存在较强随机性,没有考虑在网络结构上不同邻居节点间的相似性对转移概率的作用。针对此问题,提出一种基于网络表示学习与随机游走的链路预测算法。首先,通过基于深度学习的网络表示学习算法——DeepWalk学习网络节点的潜在结构特征,将网络中的各节点表征到低维向量空间;然后,在重启随机游走(RWR)和局部随机游走(LRW)算法的随机游走过程中融合各邻居节点在向量空间上的相似性,重新定义出邻居节点间的转移概率;最后,在5个真实数据集上进行大量实验验证。实验结果表明:相比8种具有代表性的基于网络结构的链路预测基准算法,所提算法链路预测结果的AUC值均有提升,最高达3.34%。  相似文献   

10.
目的 鉴于随机游走过程对人类视觉注意力的良好描述能力,提出一种基于惰性随机游走的视觉显著性检测算法。方法 首先通过对背景超像素赋予较大的惰性因子,即以背景超像素作为惰性种子节点,在由图像超像素组成的无向图上演化惰性随机游走过程,获得初始显著性图;然后利用空间位置先验及颜色对比度先验信息对初始显著图进行修正;最终通过基于前景的惰性随机游走产生鲁棒的视觉显著性检测结果。结果 为验证算法有效性,在MSRA-1000数据库上进行了仿真实验,并与主流相关算法进行了定性与定量比较。本文算法的Receiver ROC(operating characteristic)曲线及F值均高于其他相关算法。结论 与传统基于随机过程的显著性检测算法相比,普通随机游走过程无法保证收敛到稳定状态,本文算法从理论上有效克服了该问题,提高了算法的适用性;其次,本文算法通过利用视觉转移的往返时间来刻画显著性差异,在生物视觉的模拟上更加合理贴切,与普通随机游走过程采用的单向转移时间相比,效果更加鲁棒。  相似文献   

11.
布谷鸟搜索(Cuckoo Search,CS)算法是一种简单方便的仿生群优化算法。它虽然具有明显的优点,但在处理高维复杂问题时,不能收敛到最优解。针对算法后期收敛速度降低、易陷入局部最优的问题,本文在布谷鸟搜索算法中加入偏好随机游走机制,使得算法不容易陷入局部最优,还改变了发现概率pa的值来提高算法的各种性能。对单目标基准函数进行仿真测试,仿真结果表明,优化后的算法可以有效地提高布谷鸟算法的寻优能力。  相似文献   

12.
随着Web的推广和普及,产生了越来越多的网络数据。 广泛应用了 标签系统 ,以便人们使用搜索技术来组织和使用这些信息。这些数据允许用户使用关键字(标签)注释资源,为传统的基于文本的信息检索提供了方案。为了支持用户选择正确的关键字,标签推荐算法应运而生。提出了一种个性化标签推荐方法,该方法综合了用户的资源标签与标签概率模型。该模型利用了简单语言模型和隐含狄利克雷分配模型,并针对现实世界的大型数据集进行了大量实验。实验表明,该个性化方法改进了标签推荐算法,推荐结果优于传统方法。  相似文献   

13.
采用用户-景点-线路三部图来描述用户的行为,通过改进的随机行走算法给用户推荐合适的旅游线路,可以提供准确的旅游线路推荐并有效地解决新的线路难以推荐的问题。通过对景点的聚类,减小了数据稀疏性对推荐带来的影响并避免了过拟合问题。实验结果表明,与传统的方法相比,本文提出的算法具有较好的排序准确度,特别是对稀疏度较高的用户,优势更明显。  相似文献   

14.
在Random Walk算法中,边的权重对算法分割性能有着重要的影响,针对原算法在计算权重时仅使用相邻像素灰度值变化信息的局限性,通过引入图像局部熵,使得权重函数同时反映相邻像素灰度变化信息和图像局部灰度离散度信息,增强算法对目标内容和边界的识别能力。同时通过Fisher评价函数构造最佳分类阈值的选取法则,增强了算法的判别能力。实验表明改进后的算法对目标内容和边界的识别能力有较大提高,且对噪声具有更好的鲁棒性。  相似文献   

15.
高娜  杨明 《计算机科学》2016,43(3):57-61, 79
协同过滤推荐算法由于其推荐的准确性和高效性已经成为推荐领域最流行的推荐算法之一。该算法通过分析用户的历史评分记录来构建用户兴趣模型,进而为用户产生一组推荐。然而,推荐系统中用户的评分记录是极为有限的,导致传统协同过滤算法面临严重的数据稀疏性问题。针对此问题,提出了一种改进的嵌入LDA主题模型的协同过滤推荐算法(ULR-CF算法)。该算法利用LDA主题建模方法在用户项目标签集上挖掘潜在的主题信息,进而结合文档-主题概率分布矩阵和评分矩阵来共同度量用户和项目相似度。实验结果表明,提出的ULR-CF算法可以有效缓解数据稀疏性问题,并能显著提高推荐系统的准确性。  相似文献   

16.

Let X 1,X 2,… be i.i.d. random variables with P(X 1=-k) ∈ (0,1) for some kN, S 1=X 1 +···+ X 1. We derive an exact expression for the probability that a particle performing a simple random walk will never cross a given straight line, i.e., P(Sl > lα + β for some lN), where α ∈ [?k,k], β S 0 are rational. Further the exact distribution of sup {Sl /l|≥1} is obtained.  相似文献   

17.
In this paper we study how to optimally select between different sources in shooting random walk Monte Carlo Radiosity. Until now the probability of selecting a source has been made proportional to the importance of that source for the region of interest. We will show here that, whenever the transition probabilities are the Form Factors, this is not optimal, and will consequently give the optimal case. This will correspond to probabilities proportional to the square root of importances, rather than to importances themselves.  相似文献   

18.
针对复杂情况下肺实质的分割问题,提出了一种基于Random Walk算法对肺实质自动分割的方法。首先,根据胸部组织解剖学及其计算机断层扫描(CT)图像的影像学特征,在肺实质及其周围组织分别确定目标区域种子点和背景种子点位置;然后,使用Random Walk算法对CT图像进行分割,提取近似肺区域的掩模;接下来,对掩模实施数学形态学运算,来进一步调整目标区域种子点和背景种子点的标定位置,使其适合具体的复杂情况;最后,再次使用Random Walk算法分割图像,得到最终的肺实质分割结果。实验结果显示,该方法与金标准的平均绝对距离为0.44±0.13 mm,重合率(DC)为99.21%±0.38%。与其他分割方法相比,该方法在分割精度上得到了显著提高。结果表明,提出的方法能够解决复杂情况下肺实质分割的问题,确保了分割的完整性、准确性、实时性和鲁棒性,分割结果和时间均可满足临床需求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号