共查询到18条相似文献,搜索用时 93 毫秒
1.
2.
视觉是人类感知世界的重要途径之一。视频显著性检测旨在通过计算机模拟人类的视觉注意机制,智能地检测出视频中的显著性物体。目前,基于传统方法的视频显著性检测已经达到一定的水平,但是在时空信息一致性利用方面仍不能令人满意。因此,文中提出了一种基于全时序卷积神经网络的视频显著性检测方法。首先,利用全时序卷积对输入视频进行空间信息和时间信息的时空特征提取;然后,利用3D池化层进行降维;其次,在解码层中用3D反卷积和3D上采样对前端特征进行解码;最后,通过把时空信息有机地提取与融合,来有效地提升显著图的质量。实验结果表明,所提算法在3个广泛使用的视频显著性检测数据集(DAVIS,FBMS,SegTrack)上的性能优于当前主流的视频显著性检测方法。 相似文献
3.
针对目前协同显著性检测方法中存在的语义特征类相差悬殊的物体被误检测为协同对象等问题,提出了一种基于卷积神经网络和语义相关的协同显著性检测算法CSCCD。首先,采用引导超像素滤波方法对SLIC分割出的超像素区域和DSS生成的显著性区域进行处理,清晰地显示了目标边界轮廓;然后使用Mask R-CNN提取语义特征,给出了图像语义特征和语义一致性的定义,并针对提取语义特征过程中出现的同一语义类别的物体在不同形态下被检测为不同语义类别的问题,提出了图像组语义相关类的概念,在此概念的基础上定义了图像组语义关联类,解决了多幅图像的语义关联问题;最后融合显著性检测区域和图像组语义一致性区域得到协同显著性检测结果。在公开基准数据集上的实验结果表明,该算法能够有效凸显目标整体及轮廓,在客观量化方面的综合性能有明显提升。 相似文献
4.
为了检测不同失真类型的视频图像,实现对失真视频图像的分类处理,本文提出一种基于卷积神经网络的视频图像失真检测及分类方法。首先,将视频图像分割成较小的图像块作为输入,然后利用卷积神经网络主动学习特征,引入正负例均衡化和自适应学习速率减缓过拟合和局部最小值问题,由softmax分类器预测图像块的失真类型,最后采用多数表决规则,得到视频图像的预测类别。采用仿真标准图像库(LIVE)和实际监控视频库对本文方法进行性能测试,前者的总体分类准确率达到92.22%,后者的总体分类准确率达到92.86%。整体的分类准确率均高于已有的其他三种算法。引入正负例均衡化和自适应学习速率后,CNN的分类准确率得到明显提升。实验结果表明本文方法能主动学习图像质量特征,提高失真视频图像分类检测的准确率,通用于任意失真类型的视频图像分类检测,具有较强的鲁棒性和实用性。 相似文献
5.
针对当前基于深度学习的显著性对象检测算法不能准确保存对象边缘的区域,从而导致检测出的显著性对象边缘区域模糊、准确率不高的问题,提出了一种基于多任务深度学习模型的显著性对象检测算法。首先,基于深度卷积神经网络(CNN),训练一个多任务模型分别学习显著性对象的区域和边缘的特征;然后,利用检测到的边缘生成大量候选区域,再结合显著性区域检测的结果对候选区域进行排序和计算权值;最后提取出完整的显著性图。在三个常用标准数据集上的实验结果表明,所提方法获得了更高的准确率,其中F-measure比基于深度学习的算法平均提高了1.9%,而平均绝对误差(MAE)平均降低了12.6%。 相似文献
6.
海面环境容易受到云雾等气象因素影响,采集到的海面图像对比度减小,噪声干扰较多,导致目标显著性提取时较难准确完整地获取显著性区域。针对以上问题,提出了一种基于改进的Deeplabv3网络的海面显著性目标检测方法。引用空洞卷积和全局注意力模块提取更多的特征信息。将不同空洞率特征矩阵进行并联,融合图像上下文特征信息。对二分类交叉熵损失函数添加约束项来对云雾遮挡的显著性特征进行约束。通过对大型数据集预训练及海面云雾遮挡数据集的训练后,保存其模型。实验结果表明:提出方法获取的受云雾遮挡干扰时显著性区域变化较小且能够较为完整地描述显著性目标。在遮挡程度为30、50、70情况下,该方法的F-measure值相比于其他几种对比算法平均提高了22.12%、15.83%、13.30%。 相似文献
7.
针对现有车型识别算法的耗时长、特征提取复杂、识别率低等问题,本文引入了基于深度学习的卷积神经网络(Convolutional Neural Network CNN)方法。此方法具有鲁棒性好,泛化能力强,识别度高等优点,因而被广泛使用于图像识别领域。在对公路中的4种主要车型(大巴车,面包车,轿车,卡车)的分类实验中,我们运用改进后的卷积神经网络LeNet-5,使车型训练、测试结果均达到了98%以上。另外,本文还研究了改进网络中的Dropout层对车型识别效果的影响。与传统算法相比,经过本文改进后的卷积神经网络LeNet-5,在减少检测时间和提高识别率等方面都有了显著提高,在车型识别上具有明显的优势。 相似文献
8.
RGB-D图像显著性检测旨在提取三维图像中的显著目标.为解决当前显著性检测算法难以检测出光线干扰场景内的目标和低对比度的目标等问题,提出了基于跳层卷积神经网络的RGB-D图像显著性检测方法.利用VGG网络分离出RGB图像和深度图像的浅层与深层特征,而后进行特征提取;以跳层结构为基础连接提取到的特征,实现融合深度、颜色、... 相似文献
9.
基于全卷积神经网络与低秩稀疏分解的显著性检测 总被引:1,自引:0,他引:1
为了准确检测复杂背景下的显著区域,提出一种全卷积神经网络与低秩稀疏分解相结合的显著性检测方法,将图像分解为代表背景的低秩矩阵和对应显著区域的稀疏噪声,结合利用全卷积神经网络学习得到的高层语义先验知识,检测图像中的显著区域.首先,对原图像进行超像素聚类,并提取每个超像素的颜色、纹理和边缘特征,据此构成特征矩阵;然后,在MSRA数据库中,基于梯度下降法学习得到特征变换矩阵,利用全卷积神经网络学习得到高层语义先验知识;接着,利用特征变换矩阵和高层语义先验知识矩阵对特征矩阵进行变换;最后,利用鲁棒主成分分析算法对变换后的矩阵进行低秩稀疏分解,并根据分解得到的稀疏噪声计算显著图.在公开数据集上进行实验验证,并与当前流行的方法进行对比,实验结果表明,本文方法能够准确地检测感兴趣区域,是一种有效的自然图像目标检测与分割的预处理方法. 相似文献
10.
目的 显著性检测问题是近年来的研究热点之一,针对许多传统方法都存在着特征学习不足和鲁棒检测效果不好等问题,提出一种新的基于深度卷积神经网络的显著性检测模型.方法 首先,利用超像素的方法聚类相似特征的像素点,仿人脑视皮层细胞提取目标边缘,得到区域和边缘特征.然后,通过深度卷积神经网络学习图像的区域与边缘特征,获取相应的目标检测显著度置信图.最后,将深度卷积神经网络输出的置信度融入到条件随机场,求取能量最小化,实现显著性与非显著性判别,完成显著性检测任务.结果 在两个常用的视觉检测数据库上进行实验,本文算法的检测精度与当前最好的方法相比,在MSAR数据库上检测精度相对提升大约1.5%,在Berkeley数据库上提升效果更加明显,达到了5%.此外,无论是自然场景还是人工建筑场景、大目标与小目标,检测的效果都是最好的.结论 本文融合多特征的深度学习方法与单一浅层人工特征的方法相比更有优势,它避免了手工标定特征所带来的不确定性,具有更好的鲁棒性与普适性,从主观视觉愉悦度和客观检测准确度两方面说明了算法的有效性. 相似文献
11.
随着深度学习技术的发展以及卷积神经网络在众多计算机视觉任务中的突出表现,基于卷积神经网络的深度显著性检测方法成为显著性检测领域的主流方法.但是,卷积神经网络受卷积核尺寸的限制,在网络底层只能在较小范围内提取特征,不能很好地检测区域内不显著但全局显著的对象;其次,卷积神经网络通过堆叠卷积层的方式可获得图像的全局信息,但在... 相似文献
12.
基于深度卷积神经网络的行人检测 总被引:1,自引:0,他引:1
行人检测一直是目标检测研究与应用中的热点。目前行人检测主要通过设计有效的特征提取方法建立对行人特征的描述,然后利用分类器实现二分类。卷积神经网络作为深度学习的重要组成,在图像、语音等领域得到了成功应用。针对人工设计的特征提取方法难以有效表达复杂环境下行人特征的问题,提出采用多层网络构建深度卷积神经网络实现对行人检测的方法。系统分析了卷积神经网络层数、卷积核大小、特征维数等对识别效果的影响,优化了网络参数。实验结果表明该方法对于行人检测具有很高的识别率,优于传统方法。 相似文献
13.
由于现有的基于深度神经网络的显著性对象检测算法忽视了对象的结构信息,使得显著性图不能完整地覆盖整个对象区域,导致检测的准确率下降。针对此问题,提出一种结构感知的深度显著性对象检测算法。算法基于一种多流结构的深度神经网络,包括特征提取网络、对象骨架检测子网络、显著性对象检测子网络和跨任务连接部件四个部分。首先,在显著性对象子网络的训练和测试阶段,通过对象骨骼检测子网络学习对象的结构信息,并利用跨任务连接部件使得显著性对象检测子网络能自动编码对象骨骼子网络学习的信息,从而感知对象的整体结构,克服对象区域检测不完整问题;其次,为了进一步提高所提方法的准确率,利用全连接条件随机场对检测结果进行进一步的优化。在三个公共数据集上的实验结果表明,该算法在检测的准确率和运行效率上均优于现有存在的基于深度学习的算法,这也说明了在深度神经网络中考虑对象结构信息的捕获是有意义的,可以有助于提高模型准确率。 相似文献
14.
基于卷积神经网络的目标检测研究综述 总被引:1,自引:0,他引:1
随着训练数据的增加以及机器性能的提高,基于卷积神经网络的目标检测冲破了传统目标检测的瓶颈,成为当前目标检测的主流算法。因此,研究如何有效地利用卷积神经网络进行目标检测具有重要的价值。首先回顾了卷积神经网络如何解决传统目标检测中存在的问题;其次介绍了卷积神经网络的基本结构,叙述了当前卷积神经网络的研究进展以及常用的卷积神经网络;然后重点分析和讨论了两种应用卷积神经网络进行目标检测的思路和方法,指出了目前存在的不足;最后总结了基于卷积神经网络的目标检测,以及未来的发展方向。 相似文献
15.
16.
目的 传统显著性检测模型大多利用手工选择的中低层特征和先验信息进行物体检测,其准确率和召回率较低,随着深度卷积神经网络的兴起,显著性检测得以快速发展。然而,现有显著性方法仍存在共性缺点,难以在复杂图像中均匀地突显整个物体的明确边界和内部区域,主要原因是缺乏足够且丰富的特征用于检测。方法 在VGG(visual geometry group)模型的基础上进行改进,去掉最后的全连接层,采用跳层连接的方式用于像素级别的显著性预测,可以有效结合来自卷积神经网络不同卷积层的多尺度信息。此外,它能够在数据驱动的框架中结合高级语义信息和低层细节信息。为了有效地保留物体边界和内部区域的统一,采用全连接的条件随机场(conditional random field,CRF)模型对得到的显著性特征图进行调整。结果 本文在6个广泛使用的公开数据集DUT-OMRON(Dalian University of Technology and OMRON Corporation)、ECSSD(extended complex scene saliency dataset)、SED2(segmentation evalution database 2)、HKU、PASCAL-S和SOD(salient objects dataset)上进行了测试,并就准确率—召回率(precision-recall,PR)曲线、F测度值(F-measure)、最大F测度值、加权F测度值和均方误差(mean absolute error,MAE)等性能评估指标与14种最先进且具有代表性的方法进行比较。结果显示,本文方法在6个数据集上的F测度值分别为0.696、0.876、0.797、0.868、0.772和0.785;最大F测度值分别为0.747、0.899、0.859、0.889、0.814和0.833;加权F测度值分别为0.656、0.854、0.772、0.844、0.732和0.762;MAE值分别为0.074、0.061、0.093、0.049、0.099和0.124。无论是前景和背景颜色相似的图像集,还是多物体的复杂图像集,本文方法的各项性能均接近最新研究成果,且优于大多数具有代表性的方法。结论 本文方法对各种场景的图像显著性检测都具有较强的鲁棒性,同时可以使显著性物体的边界和内部区域更均匀,检测结果更准确。 相似文献
17.
视觉显著性物体检测是对人类视觉和认知系统的模拟,而深度学习则是对人类大脑计算方式的模拟,将两者有机结合可以有效推动计算机视觉的发展。视觉显著性物体检测的任务是从图像中定位并提取具有明确轮廓的显著性物体实例。随着深度学习的发展,视觉显著性物体检测的精度和效率都得到巨大提升,但仍然面临改进主流算法性能、减少对像素级标注样本的依赖等主要挑战。针对上述挑战,本文从视觉显著性物体检测思想与深度学习方法融合策略的角度对相关论述进行分类总结。1)分析传统显著性物体检测方法带来的启示及其缺点,指出视觉显著性物体检测的核心思路为多层次特征的提取、融合与修整;2)从改进特征编码方式与信息传递结构、提升边缘定位精度、改善注意力机制、提升训练稳定性和控制噪声的角度对循环卷积神经网络、全卷积神经网络和生成对抗网络3种主流算法的性能提升进行分析,从优化弱监督样本处理模块的角度分析了减少对像素级标注样本依赖的方法;3)对协同显著性物体检测、多类别图像显著性物体检测以及未来的研究问题和方向进行介绍,并给出了可能的解决思路。 相似文献
18.
目的 传统的图像风格迁移主要在两个配对的图像间进行。循环一致性对抗网络(CycleGAN)首次将生成对抗网络应用于图像风格迁移,实现无配对图像之间的风格迁移,取得了一定的效果,但泛化能力较弱,当训练图像与测试图像之间差距较大时,迁移效果不佳。针对上述问题,本文提出了一种结合全卷积网络(FCN)与CycleGAN的图像风格迁移方法,使得图像能够实现特定目标之间的实例风格迁移。同时验证了训练数据集并非是造成CycleGAN风格迁移效果不佳的因素。方法 首先结合全卷积网络对图像进行语义分割,确定风格迁移的目标,然后将风格迁移后的图像与目标进行匹配,确定迁移对象实现局部风格迁移。为验证CycleGAN在训练图像和测试图像差距较大时风格转移效果不佳并非因缺少相应训练集,制作了训练数据集并带入原网络训练。结果 实验表明结合了全卷积网络与CycleGAN的图像风格迁移方法增加了识别能力,能够做到图像局部风格迁移而保持其余元素的完整性,相对于CycleGAN,该方法能够有效抑制目标之外区域的风格迁移,实验中所用4张图片平均只有4.03%的背景像素点发生了改变,实例迁移效果得到很好提升。而将自制训练集带入原网络训练后,依然不能准确地在目标对象之间进行风格迁移。结论 结合了全卷积网络与CycleGAN的方法能够实现图像的局部风格迁移而保持目标对象之外元素不发生改变,而改变训练数据集对CycleGAN进行实例风格迁移准确性的影响并不大。 相似文献